Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
BMC Biol ; 22(1): 17, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38273288

RESUMO

BACKGROUND: Due to interindividual variation in the cellular composition of the human cortex, it is essential that covariates that capture these differences are included in epigenome-wide association studies using bulk tissue. As experimentally derived cell counts are often unavailable, computational solutions have been adopted to estimate the proportion of different cell types using DNA methylation data. Here, we validate and profile the use of an expanded reference DNA methylation dataset incorporating two neuronal and three glial cell subtypes for quantifying the cellular composition of the human cortex. RESULTS: We tested eight reference panels containing different combinations of neuronal- and glial cell types and characterised their performance in deconvoluting cell proportions from computationally reconstructed or empirically derived human cortex DNA methylation data. Our analyses demonstrate that while these novel brain deconvolution models produce accurate estimates of cellular proportions from profiles generated on postnatal human cortex samples, they are not appropriate for the use in prenatal cortex or cerebellum tissue samples. Applying our models to an extensive collection of empirical datasets, we show that glial cells are twice as abundant as neuronal cells in the human cortex and identify significant associations between increased Alzheimer's disease neuropathology and the proportion of specific cell types including a decrease in NeuNNeg/SOX10Neg nuclei and an increase of NeuNNeg/SOX10Pos nuclei. CONCLUSIONS: Our novel deconvolution models produce accurate estimates for cell proportions in the human cortex. These models are available as a resource to the community enabling the control of cellular heterogeneity in epigenetic studies of brain disorders performed on bulk cortex tissue.


Assuntos
Metilação de DNA , Epigênese Genética , Feminino , Gravidez , Recém-Nascido , Humanos , Neuroglia , Córtex Cerebral , Neurônios/metabolismo
2.
Hum Mol Genet ; 31(18): 3181-3190, 2022 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-35567415

RESUMO

Most epigenetic epidemiology to date has utilized microarrays to identify positions in the genome where variation in DNA methylation is associated with environmental exposures or disease. However, these profile less than 3% of DNA methylation sites in the human genome, potentially missing affected loci and preventing the discovery of disrupted biological pathways. Third generation sequencing technologies, including Nanopore sequencing, have the potential to revolutionize the generation of epigenetic data, not only by providing genuine genome-wide coverage but profiling epigenetic modifications direct from native DNA. Here we assess the viability of using Nanopore sequencing for epidemiology by performing a comparison with DNA methylation quantified using the most comprehensive microarray available, the Illumina EPIC array. We implemented a CRISPR-Cas9 targeted sequencing approach in concert with Nanopore sequencing to profile DNA methylation in three genomic regions to attempt to rediscover genomic positions that existing technologies have shown are differentially methylated in tobacco smokers. Using Nanopore sequencing reads, DNA methylation was quantified at 1779 CpGs across three regions, providing a finer resolution of DNA methylation patterns compared to the EPIC array. The correlation of estimated levels of DNA methylation between platforms was high. Furthermore, we identified 12 CpGs where hypomethylation was significantly associated with smoking status, including 10 within the AHRR gene. In summary, Nanopore sequencing is a valid option for identifying genomic loci where large differences in DNAm are associated with a phenotype and has the potential to advance our understanding of the role differential methylation plays in the etiology of complex disease.


Assuntos
Metilação de DNA , Sequenciamento por Nanoporos , Ilhas de CpG/genética , Metilação de DNA/genética , Epigênese Genética/genética , Epigenômica , Humanos
3.
Bioinformatics ; 38(16): 3950-3957, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35771651

RESUMO

MOTIVATION: Data normalization is an essential step to reduce technical variation within and between arrays. Due to the different karyotypes and the effects of X chromosome inactivation, females and males exhibit distinct methylation patterns on sex chromosomes; thus, it poses a significant challenge to normalize sex chromosome data without introducing bias. Currently, existing methods do not provide unbiased solutions to normalize sex chromosome data, usually, they just process autosomal and sex chromosomes indiscriminately. RESULTS: Here, we demonstrate that ignoring this sex difference will lead to introducing artificial sex bias, especially for thousands of autosomal CpGs. We present a novel two-step strategy (interpolatedXY) to address this issue, which is applicable to all quantile-based normalization methods. By this new strategy, the autosomal CpGs are first normalized independently by conventional methods, such as funnorm or dasen; then the corrected methylation values of sex chromosome-linked CpGs are estimated as the weighted average of their nearest neighbors on autosomes. The proposed two-step strategy can also be applied to other non-quantile-based normalization methods, as well as other array-based data types. Moreover, we propose a useful concept: the sex explained fraction of variance, to quantitatively measure the normalization effect. AVAILABILITY AND IMPLEMENTATION: The proposed methods are available by calling the function 'adjustedDasen' or 'adjustedFunnorm' in the latest wateRmelon package (https://github.com/schalkwyk/wateRmelon), with methods compatible with all the major workflows, including minfi. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Metilação de DNA , Sexismo , Feminino , Masculino , Humanos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Processamento de Proteína Pós-Traducional
4.
PLoS Genet ; 16(10): e1009035, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33048947

RESUMO

Epidemiological research suggests that paternal obesity may increase the risk of fathering small for gestational age offspring. Studies in non-human mammals indicate that such associations could be mediated by DNA methylation changes in spermatozoa that influence offspring development in utero. Human obesity is associated with differential DNA methylation in peripheral blood. It is unclear, however, whether this differential DNA methylation is reflected in spermatozoa. We profiled genome-wide DNA methylation using the Illumina MethylationEPIC array in a cross-sectional study of matched human blood and sperm from lean (discovery n = 47; replication n = 21) and obese (n = 22) males to analyse tissue covariation of DNA methylation, and identify obesity-associated methylomic signatures. We found that DNA methylation signatures of human blood and spermatozoa are highly discordant, and methylation levels are correlated at only a minority of CpG sites (~1%). At the majority of these sites, DNA methylation appears to be influenced by genetic variation. Obesity-associated DNA methylation in blood was not generally reflected in spermatozoa, and obesity was not associated with altered covariation patterns or accelerated epigenetic ageing in the two tissues. However, one cross-tissue obesity-specific hypermethylated site (cg19357369; chr4:2429884; P = 8.95 × 10-8; 2% DNA methylation difference) was identified, warranting replication and further investigation. When compared to a wide range of human somatic tissue samples (n = 5,917), spermatozoa displayed differential DNA methylation across pathways enriched in transcriptional regulation. Overall, human sperm displays a unique DNA methylation profile that is highly discordant to, and practically uncorrelated with, that of matched peripheral blood. We observed that obesity was only nominally associated with differential DNA methylation in sperm, and therefore suggest that spermatozoal DNA methylation is an unlikely mediator of intergenerational effects of metabolic traits.


Assuntos
Metilação de DNA/genética , Epigenoma/genética , Obesidade/genética , Espermatozoides/metabolismo , Adolescente , Adulto , Índice de Massa Corporal , Criança , Pré-Escolar , Ilhas de CpG/genética , Replicação do DNA/genética , Epigênese Genética/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/genética , Genoma Humano/genética , Idade Gestacional , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Obesidade/sangue , Obesidade/epidemiologia , Obesidade/patologia , Polimorfismo de Nucleotídeo Único/genética , Espermatozoides/crescimento & desenvolvimento , Espermatozoides/imunologia , Adulto Jovem
5.
BMC Genomics ; 22(1): 484, 2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34182928

RESUMO

BACKGROUND: Sex is an important covariate of epigenome-wide association studies due to its strong influence on DNA methylation patterns across numerous genomic positions. Nevertheless, many samples on the Gene Expression Omnibus (GEO) frequently lack a sex annotation or are incorrectly labelled. Considering the influence that sex imposes on DNA methylation patterns, it is necessary to ensure that methods for filtering poor samples and checking of sex assignment are accurate and widely applicable. RESULTS: Here we presented a novel method to predict sex using only DNA methylation beta values, which can be readily applied to almost all DNA methylation datasets of different formats (raw IDATs or text files with only signal intensities) uploaded to GEO. We identified 4345 significantly (p<0.01) sex-associated CpG sites present on both 450K and EPIC arrays, and constructed a sex classifier based on the two first principal components of the DNA methylation data of sex-associated probes mapped on sex chromosomes. The proposed method is constructed using whole blood samples and exhibits good performance across a wide range of tissues. We further demonstrated that our method can be used to identify samples with sex chromosome aneuploidy, this function is validated by five Turner syndrome cases and one Klinefelter syndrome case. CONCLUSIONS: This proposed sex classifier not only can be used for sex predictions but also applied to identify samples with sex chromosome aneuploidy, and it is freely and easily accessible by calling the 'estimateSex' function from the newest wateRmelon Bioconductor package ( https://github.com/schalkwyk/wateRmelon ).


Assuntos
Metilação de DNA , Genômica , Aneuploidia , Ilhas de CpG , Humanos , Cromossomos Sexuais/genética
6.
Hum Mol Genet ; 28(13): 2201-2211, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31220268

RESUMO

Autism spectrum disorder (ASD) encompasses a collection of complex neuropsychiatric disorders characterized by deficits in social functioning, communication and repetitive behaviour. Building on recent studies supporting a role for developmentally moderated regulatory genomic variation in the molecular aetiology of ASD, we quantified genome-wide patterns of DNA methylation in 223 post-mortem tissues samples isolated from three brain regions [prefrontal cortex, temporal cortex and cerebellum (CB)] dissected from 43 ASD patients and 38 non-psychiatric control donors. We identified widespread differences in DNA methylation associated with idiopathic ASD (iASD), with consistent signals in both cortical regions that were distinct to those observed in the CB. Individuals carrying a duplication on chromosome 15q (dup15q), representing a genetically defined subtype of ASD, were characterized by striking differences in DNA methylationacross a discrete domain spanning an imprinted gene cluster within the duplicated region. In addition to the dramatic cis-effects on DNA methylation observed in dup15q carriers, we identified convergent methylomic signatures associated with both iASD and dup15q, reflecting the findings from previous studies of gene expression and H3K27ac. Cortical co-methylation network analysis identified a number of co-methylated modules significantly associated with ASD that are enriched for genomic regions annotated to genes involved in the immune system, synaptic signalling and neuronal regulation. Our study represents the first systematic analysis of DNA methylation associated with ASD across multiple brain regions, providing novel evidence for convergent molecular signatures associated with both idiopathic and syndromic autism.


Assuntos
Transtorno Autístico/genética , Cerebelo/metabolismo , Metilação de DNA , Córtex Pré-Frontal/metabolismo , Lobo Temporal/metabolismo , Transtorno Autístico/metabolismo , Estudos de Casos e Controles , Cerebelo/química , Epigenoma , Feminino , Ontologia Genética , Redes Reguladoras de Genes , Genoma Humano , Humanos , Sistema Imunitário/metabolismo , Masculino , Vias Neurais/fisiologia , Córtex Pré-Frontal/química , Transmissão Sináptica/genética , Transmissão Sináptica/fisiologia , Lobo Temporal/química
7.
Am J Hum Genet ; 103(5): 654-665, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30401456

RESUMO

Characterizing the complex relationship between genetic, epigenetic, and transcriptomic variation has the potential to increase understanding about the mechanisms underpinning health and disease phenotypes. We undertook a comprehensive analysis of common genetic variation on DNA methylation (DNAm) by using the Illumina EPIC array to profile samples from the UK Household Longitudinal study. We identified 12,689,548 significant DNA methylation quantitative trait loci (mQTL) associations (p < 6.52 × 10-14) occurring between 2,907,234 genetic variants and 93,268 DNAm sites, including a large number not identified by previous DNAm-profiling methods. We demonstrate the utility of these data for interpreting the functional consequences of common genetic variation associated with > 60 human traits by using summary-data-based Mendelian randomization (SMR) to identify 1,662 pleiotropic associations between 36 complex traits and 1,246 DNAm sites. We also use SMR to characterize the relationship between DNAm and gene expression and thereby identify 6,798 pleiotropic associations between 5,420 DNAm sites and the transcription of 1,702 genes. Our mQTL database and SMR results are available via a searchable online database as a resource to the research community.


Assuntos
Metilação de DNA/genética , DNA/genética , Epigênese Genética/genética , Expressão Gênica/genética , Variação Genética/genética , Locos de Características Quantitativas/genética , Transcriptoma/genética , Estudo de Associação Genômica Ampla/métodos , Humanos , Estudos Longitudinais , Fenótipo , Característica Quantitativa Herdável , Transcrição Gênica/genética
8.
Brain ; 143(12): 3763-3775, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33300551

RESUMO

Human DNA methylation data have been used to develop biomarkers of ageing, referred to as 'epigenetic clocks', which have been widely used to identify differences between chronological age and biological age in health and disease including neurodegeneration, dementia and other brain phenotypes. Existing DNA methylation clocks have been shown to be highly accurate in blood but are less precise when used in older samples or in tissue types not included in training the model, including brain. We aimed to develop a novel epigenetic clock that performs optimally in human cortex tissue and has the potential to identify phenotypes associated with biological ageing in the brain. We generated an extensive dataset of human cortex DNA methylation data spanning the life course (n = 1397, ages = 1 to 108 years). This dataset was split into 'training' and 'testing' samples (training: n = 1047; testing: n = 350). DNA methylation age estimators were derived using a transformed version of chronological age on DNA methylation at specific sites using elastic net regression, a supervised machine learning method. The cortical clock was subsequently validated in a novel independent human cortex dataset (n = 1221, ages = 41 to 104 years) and tested for specificity in a large whole blood dataset (n = 1175, ages = 28 to 98 years). We identified a set of 347 DNA methylation sites that, in combination, optimally predict age in the human cortex. The sum of DNA methylation levels at these sites weighted by their regression coefficients provide the cortical DNA methylation clock age estimate. The novel clock dramatically outperformed previously reported clocks in additional cortical datasets. Our findings suggest that previous associations between predicted DNA methylation age and neurodegenerative phenotypes might represent false positives resulting from clocks not robustly calibrated to the tissue being tested and for phenotypes that become manifest in older ages. The age distribution and tissue type of samples included in training datasets need to be considered when building and applying epigenetic clock algorithms to human epidemiological or disease cohorts.


Assuntos
Envelhecimento/genética , Relógios Biológicos/fisiologia , Córtex Cerebral/crescimento & desenvolvimento , Epigênese Genética/fisiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Algoritmos , Contagem de Células , Córtex Cerebral/citologia , Criança , Pré-Escolar , DNA/genética , Metilação de DNA , Bases de Dados Factuais , Feminino , Humanos , Lactente , Aprendizado de Máquina , Masculino , Pessoa de Meia-Idade , Neurônios/fisiologia , Fenótipo , Reprodutibilidade dos Testes , Caracteres Sexuais , Adulto Jovem
9.
Bioinformatics ; 35(6): 981-986, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30875430

RESUMO

MOTIVATION: The datasets generated by DNA methylation analyses are getting bigger. With the release of the HumanMethylationEPIC micro-array and datasets containing thousands of samples, analyses of these large datasets using R are becoming impractical due to large memory requirements. As a result there is an increasing need for computationally efficient methodologies to perform meaningful analysis on high dimensional data. RESULTS: Here we introduce the bigmelon R package, which provides a memory efficient workflow that enables users to perform the complex, large scale analyses required in epigenome wide association studies (EWAS) without the need for large RAM. Building on top of the CoreArray Genomic Data Structure file format and libraries packaged in the gdsfmt package, we provide a practical workflow that facilitates the reading-in, preprocessing, quality control and statistical analysis of DNA methylation data.We demonstrate the capabilities of the bigmelon package using a large dataset consisting of 1193 human blood samples from the Understanding Society: UK Household Longitudinal Study, assayed on the EPIC micro-array platform. AVAILABILITY AND IMPLEMENTATION: The bigmelon package is available on Bioconductor (http://bioconductor.org/packages/bigmelon/). The Understanding Society dataset is available at https://www.understandingsociety.ac.uk/about/health/data upon request. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Metilação de DNA , Software , Genômica , Humanos , Estudos Longitudinais , Fluxo de Trabalho
10.
BMC Genomics ; 20(1): 366, 2019 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-31088362

RESUMO

BACKGROUND: There has been a steady increase in the number of studies aiming to identify DNA methylation differences associated with complex phenotypes. Many of the challenges of epigenetic epidemiology regarding study design and interpretation have been discussed in detail, however there are analytical concerns that are outstanding and require further exploration. In this study we seek to address three analytical issues. First, we quantify the multiple testing burden and propose a standard statistical significance threshold for identifying DNA methylation sites that are associated with an outcome. Second, we establish whether linear regression, the chosen statistical tool for the majority of studies, is appropriate and whether it is biased by the underlying distribution of DNA methylation data. Finally, we assess the sample size required for adequately powered DNA methylation association studies. RESULTS: We quantified DNA methylation in the Understanding Society cohort (n = 1175), a large population based study, using the Illumina EPIC array to assess the statistical properties of DNA methylation association analyses. By simulating null DNA methylation studies, we generated the distribution of p-values expected by chance and calculated the 5% family-wise error for EPIC array studies to be 9 × 10- 8. Next, we tested whether the assumptions of linear regression are violated by DNA methylation data and found that the majority of sites do not satisfy the assumption of normal residuals. Nevertheless, we found no evidence that this bias influences analyses by increasing the likelihood of affected sites to be false positives. Finally, we performed power calculations for EPIC based DNA methylation studies, demonstrating that existing studies with data on ~ 1000 samples are adequately powered to detect small differences at the majority of sites. CONCLUSION: We propose that a significance threshold of P < 9 × 10- 8 adequately controls the false positive rate for EPIC array DNA methylation studies. Moreover, our results indicate that linear regression is a valid statistical methodology for DNA methylation studies, despite the fact that the data do not always satisfy the assumptions of this test. These findings have implications for epidemiological-based studies of DNA methylation and provide a framework for the interpretation of findings from current and future studies.


Assuntos
Metilação de DNA , Epigenômica/métodos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Ilhas de CpG , Epigênese Genética , Estudo de Associação Genômica Ampla , Humanos , Modelos Lineares
11.
Hum Mol Genet ; 26(1): 210-225, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28011714

RESUMO

Genetic association studies provide evidence for a substantial polygenic component to schizophrenia, although the neurobiological mechanisms underlying the disorder remain largely undefined. Building on recent studies supporting a role for developmentally regulated epigenetic variation in the molecular aetiology of schizophrenia, this study aimed to identify epigenetic variation associated with both a diagnosis of schizophrenia and elevated polygenic risk burden for the disease across multiple brain regions. Genome-wide DNA methylation was quantified in 262 post-mortem brain samples, representing tissue from four brain regions (prefrontal cortex, striatum, hippocampus and cerebellum) from 41 schizophrenia patients and 47 controls. We identified multiple disease-associated and polygenic risk score-associated differentially methylated positions and regions, which are not enriched in genomic regions identified in genetic studies of schizophrenia and do not reflect direct genetic effects on DNA methylation. Our study represents the first analysis of epigenetic variation associated with schizophrenia across multiple brain regions and highlights the utility of polygenic risk scores for identifying molecular pathways associated with aetiological variation in complex disease.


Assuntos
Biomarcadores/metabolismo , Encéfalo/metabolismo , Metilação de DNA , Epigênese Genética/genética , Esquizofrenia/genética , Adulto , Biomarcadores/análise , Cadáver , Estudos de Casos e Controles , Cerebelo/metabolismo , Corpo Estriado/metabolismo , Feminino , Hipocampo/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Herança Multifatorial , Córtex Pré-Frontal/metabolismo , Fatores de Risco , Esquizofrenia/patologia
12.
Genome Res ; 25(3): 338-52, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25650246

RESUMO

Epigenetic processes play a key role in orchestrating transcriptional regulation during development. The importance of DNA methylation in fetal brain development is highlighted by the dynamic expression of de novo DNA methyltransferases during the perinatal period and neurodevelopmental deficits associated with mutations in the methyl-CpG binding protein 2 (MECP2) gene. However, our knowledge about the temporal changes to the epigenome during fetal brain development has, to date, been limited. We quantified genome-wide patterns of DNA methylation at ∼ 400,000 sites in 179 human fetal brain samples (100 male, 79 female) spanning 23 to 184 d post-conception. We identified highly significant changes in DNA methylation across fetal brain development at >7% of sites, with an enrichment of loci becoming hypomethylated with fetal age. Sites associated with developmental changes in DNA methylation during fetal brain development were significantly underrepresented in promoter regulatory regions but significantly overrepresented in regions flanking CpG islands (shores and shelves) and gene bodies. Highly significant differences in DNA methylation were observed between males and females at a number of autosomal sites, with a small number of regions showing sex-specific DNA methylation trajectories across brain development. Weighted gene comethylation network analysis (WGCNA) revealed discrete modules of comethylated loci associated with fetal age that are significantly enriched for genes involved in neurodevelopmental processes. This is, to our knowledge, the most extensive study of DNA methylation across human fetal brain development to date, confirming the prenatal period as a time of considerable epigenomic plasticity.


Assuntos
Encéfalo/embriologia , Encéfalo/metabolismo , Metilação de DNA , Epigênese Genética , Epigenômica , Desenvolvimento Fetal/genética , Organogênese/genética , Transtorno Autístico/genética , Composição de Bases , Análise por Conglomerados , Ilhas de CpG , Epigenômica/métodos , Feminino , Perfilação da Expressão Gênica , Estudo de Associação Genômica Ampla , Humanos , Masculino , Gravidez , Sequências Reguladoras de Ácido Nucleico , Esquizofrenia/genética , Fatores Sexuais
13.
Alzheimers Dement ; 14(12): 1580-1588, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29550519

RESUMO

INTRODUCTION: Alzheimer's disease is a neurodegenerative disorder that is hypothesized to involve epigenetic dysregulation of gene expression in the brain. METHODS: We performed an epigenome-wide association study to identify differential DNA methylation associated with neuropathology in prefrontal cortex and superior temporal gyrus samples from 147 individuals, replicating our findings in two independent data sets (N = 117 and 740). RESULTS: We identify elevated DNA methylation associated with neuropathology across a 48-kb region spanning 208 CpG sites within the HOXA gene cluster. A meta-analysis of the top-ranked probe within the HOXA3 gene (cg22962123) highlighted significant hypermethylation across all three cohorts (P = 3.11 × 10-18). DISCUSSION: We present robust evidence for elevated DNA methylation associated with Alzheimer's disease neuropathology spanning the HOXA gene cluster on chromosome 7. These data add to the growing evidence highlighting a role for epigenetic variation in Alzheimer's disease, implicating the HOX gene family as a target for future investigation.


Assuntos
Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Metilação de DNA , Proteínas de Homeodomínio/genética , Córtex Pré-Frontal/patologia , Lobo Temporal/patologia , Ilhas de CpG , Epigênese Genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Família Multigênica
14.
BMC Genomics ; 18(1): 738, 2017 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-28923016

RESUMO

BACKGROUND: Epigenetic processes play a key role in orchestrating transcriptional regulation during the development of the human central nervous system. We previously described dynamic changes in DNA methylation (5mC) occurring during human fetal brain development, but other epigenetic processes operating during this period have not been extensively explored. Of particular interest is DNA hydroxymethylation (5hmC), a modification that is enriched in the human brain and hypothesized to play an important role in neuronal function, learning and memory. In this study, we quantify 5hmC across the genome of 71 human fetal brain samples spanning 23 to 184 days post-conception. RESULTS: We identify widespread changes in 5hmC occurring during human brain development, notable sex-differences in 5hmC in the fetal brain, and interactions between 5mC and 5hmC at specific sites. Finally, we identify loci where 5hmC in the fetal brain is associated with genetic variation. CONCLUSIONS: This study represents the first systematic analysis of dynamic changes in 5hmC across human neurodevelopment and highlights the potential importance of this modification in the human brain. A searchable database of our fetal brain 5hmC data is available as a resource to the research community at http://www.epigenomicslab.com/online-data-resources .


Assuntos
5-Metilcitosina/análogos & derivados , Encéfalo/crescimento & desenvolvimento , Feto/metabolismo , 5-Metilcitosina/metabolismo , Encéfalo/metabolismo , Humanos , Locos de Características Quantitativas/genética , Caracteres Sexuais , Fatores de Tempo
15.
Am J Med Genet B Neuropsychiatr Genet ; 174(3): 235-250, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27696737

RESUMO

Response to antidepressant (AD) treatment may be a more polygenic trait than previously hypothesized, with many genetic variants interacting in yet unclear ways. In this study we used methods that can automatically learn to detect patterns of statistical regularity from a sparsely distributed signal across hippocampal transcriptome measurements in a large-scale animal pharmacogenomic study to uncover genomic variations associated with AD. The study used four inbred mouse strains of both sexes, two drug treatments, and a control group (escitalopram, nortriptyline, and saline). Multi-class and binary classification using Machine Learning (ML) and regularization algorithms using iterative and univariate feature selection methods, including InfoGain, mRMR, ANOVA, and Chi Square, were used to uncover genomic markers associated with AD response. Relevant genes were selected based on Jaccard distance and carried forward for gene-network analysis. Linear association methods uncovered only one gene associated with drug treatment response. The implementation of ML algorithms, together with feature reduction methods, revealed a set of 204 genes associated with SSRI and 241 genes associated with NRI response. Although only 10% of genes overlapped across the two drugs, network analysis shows that both drugs modulated the CREB pathway, through different molecular mechanisms. Through careful implementation and optimisations, the algorithms detected a weak signal used to predict whether an animal was treated with nortriptyline (77%) or escitalopram (67%) on an independent testing set. The results from this study indicate that the molecular signature of AD treatment may include a much broader range of genomic markers than previously hypothesized, suggesting that response to medication may be as complex as the pathology. The search for biomarkers of antidepressant treatment response could therefore consider a higher number of genetic markers and their interactions. Through predominately different molecular targets and mechanisms of action, the two drugs modulate the same Creb1 pathway which plays a key role in neurotrophic responses and in inflammatory processes. © 2016 The Authors. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics Published by Wiley Periodicals, Inc.


Assuntos
Antidepressivos/uso terapêutico , Inibidores da Recaptação de Serotonina e Norepinefrina/farmacologia , Animais , Citalopram/uso terapêutico , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , Depressão/tratamento farmacológico , Transtorno Depressivo/tratamento farmacológico , Transtorno Depressivo/genética , Modelos Animais de Doenças , Feminino , Hipocampo , Masculino , Camundongos , Herança Multifatorial/genética , Nortriptilina/uso terapêutico , Farmacogenética , Inibidores Seletivos de Recaptação de Serotonina/uso terapêutico , Inibidores da Recaptação de Serotonina e Norepinefrina/uso terapêutico , Transcriptoma/genética , Resultado do Tratamento
16.
Am J Med Genet B Neuropsychiatr Genet ; 171B(3): 427-36, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26888158

RESUMO

Mouse models of aggression have traditionally compared strains, most notably BALB/cJ and C57BL/6. However, these strains were not designed to study aggression despite differences in aggression-related traits and distinct reactivity to stress. This study evaluated expression of genes differentially regulated in a stress (behavioral) mouse model of aggression with those from a recent genetic mouse model aggression. The study used a discovery-replication design using two independent mRNA studies from mouse brain tissue. The discovery study identified strain (BALB/cJ and C57BL/6J) × stress (chronic mild stress or control) interactions. Probe sets differentially regulated in the discovery set were intersected with those uncovered in the replication study, which evaluated differences between high and low aggressive animals from three strains specifically bred to study aggression. Network analysis was conducted on overlapping genes uncovered across both studies. A significant overlap was found with the genetic mouse study sharing 1,916 probe sets with the stress model. Fifty-one probe sets were found to be strongly dysregulated across both studies mapping to 50 known genes. Network analysis revealed two plausible pathways including one centered on the UBC gene hub which encodes ubiquitin, a protein well-known for protein degradation, and another on P38 MAPK. Findings from this study support the stress model of aggression, which showed remarkable molecular overlap with a genetic model. The study uncovered a set of candidate genes including the Erg2 gene, which has previously been implicated in different psychopathologies. The gene networks uncovered points at a Redox pathway as potentially being implicated in aggressive related behaviors.


Assuntos
Agressão/fisiologia , Comportamento Animal , Animais , Modelos Animais de Doenças , Redes Reguladoras de Genes , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais/genética , Estresse Psicológico/genética , Regulação para Cima/genética
17.
Am J Med Genet B Neuropsychiatr Genet ; 171(6): 827-38, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27090961

RESUMO

Despite moderate heritability estimates, the molecular architecture of aggressive behavior remains poorly characterized. This study compared gene expression profiles from a genetic mouse model of aggression with zebrafish, an animal model traditionally used to study aggression. A meta-analytic, cross-species approach was used to identify genomic variants associated with aggressive behavior. The Rankprod algorithm was used to evaluated mRNA differences from prefrontal cortex tissues of three sets of mouse lines (N = 18) selectively bred for low and high aggressive behavior (SAL/LAL, TA/TNA, and NC900/NC100). The same approach was used to evaluate mRNA differences in zebrafish (N = 12) exposed to aggressive or non-aggressive social encounters. Results were compared to uncover genes consistently implicated in aggression across both studies. Seventy-six genes were differentially expressed (PFP < 0.05) in aggressive compared to non-aggressive mice. Seventy genes were differentially expressed in zebrafish exposed to a fight encounter compared to isolated zebrafish. Seven genes (Fos, Dusp1, Hdac4, Ier2, Bdnf, Btg2, and Nr4a1) were differentially expressed across both species 5 of which belonging to a gene-network centred on the c-Fos gene hub. Network analysis revealed an association with the MAPK signaling cascade. In human studies HDAC4 haploinsufficiency is a key genetic mechanism associated with brachydactyly mental retardation syndrome (BDMR), which is associated with aggressive behaviors. Moreover, the HDAC4 receptor is a drug target for valproic acid, which is being employed as an effective pharmacological treatment for aggressive behavior in geriatric, psychiatric, and brain-injury patients. © 2016 Wiley Periodicals, Inc.


Assuntos
Agressão/fisiologia , Animais , Comportamento Animal/fisiologia , Modelos Animais de Doenças , Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes/genética , Genes fos/genética , Genes fos/fisiologia , Camundongos , Comportamento Social , Transcriptoma/genética , Peixe-Zebra/genética
18.
BMC Genomics ; 16: 262, 2015 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-25879669

RESUMO

BACKGROUND: BALB/cJ is a strain susceptible to stress and extremely susceptible to a defective hedonic impact in response to chronic stressors. The strain offers much promise as an animal model for the study of stress related disorders. We present a comparative hippocampal gene expression study on the effects of unpredictable chronic mild stress on BALB/cJ and C57BL/6J mice. Affymetrix MOE 430 was used to measure hippocampal gene expression from 16 animals of two different strains (BALB/cJ and C57BL/6J) of both sexes and subjected to either unpredictable chronic mild stress (UCMS) or no stress. Differences were statistically evaluated through supervised and unsupervised linear modelling and using Weighted Gene Coexpression Network Analysis (WGCNA). In order to gain further understanding into mechanisms related to stress response, we cross-validated our results with a parallel study from the GENDEP project using WGCNA in a meta-analysis design. RESULTS: The effects of UCMS are visible through Principal Component Analysis which highlights the stress sensitivity of the BALB/cJ strain. A number of genes and gene networks related to stress response were uncovered including the Creb1 gene. WGCNA and pathway analysis revealed a gene network centered on Nfkb1. Results from the meta-analysis revealed a highly significant gene pathway centred on the Ubiquitin C (Ubc) gene. All pathways uncovered are associated with inflammation and immune response. CONCLUSIONS: The study investigated the molecular mechanisms underlying the response to adverse environment in an animal model using a GxE design. Stress-related differences were visible at the genomic level through PCA analysis highlighting the high sensitivity of BALB/cJ animals to environmental stressors. Several candidate genes and gene networks reported are associated with inflammation and neurogenesis and could serve to inform candidate gene selection in human studies and provide additional insight into the pathology of Major Depressive Disorder.


Assuntos
Encéfalo/metabolismo , Transtorno Depressivo Maior/genética , Hipocampo/metabolismo , Estresse Psicológico/genética , Animais , Encéfalo/fisiopatologia , Transtorno Depressivo Maior/patologia , Modelos Animais de Doenças , Regulação da Expressão Gênica , Hipocampo/fisiopatologia , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Biossíntese de Proteínas , Especificidade da Espécie
19.
Neurogenetics ; 15(4): 255-66, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25142712

RESUMO

Aggressive behaviour is a major cause of mortality and morbidity. Despite of moderate heritability estimates, progress in identifying the genetic factors underlying aggressive behaviour has been limited. There are currently three genetic mouse models of high and low aggression created using selective breeding. This is the first study to offer a global transcriptomic characterization of the prefrontal cortex across all three genetic mouse models of aggression. A systems biology approach has been applied to transcriptomic data across the three pairs of selected inbred mouse strains (Turku Aggressive (TA) and Turku Non-Aggressive (TNA), Short Attack Latency (SAL) and Long Attack Latency (LAL) mice and North Carolina Aggressive (NC900) and North Carolina Non-Aggressive (NC100)), providing novel insight into the neurobiological mechanisms and genetics underlying aggression. First, weighted gene co-expression network analysis (WGCNA) was performed to identify modules of highly correlated genes associated with aggression. Probe sets belonging to gene modules uncovered by WGCNA were carried forward for network analysis using ingenuity pathway analysis (IPA). The RankProd non-parametric algorithm was then used to statistically evaluate expression differences across the genes belonging to modules significantly associated with aggression. IPA uncovered two pathways, involving NF-kB and MAPKs. The secondary RankProd analysis yielded 14 differentially expressed genes, some of which have previously been implicated in pathways associated with aggressive behaviour, such as Adrbk2. The results highlighted plausible candidate genes and gene networks implicated in aggression-related behaviour.


Assuntos
Agressão/fisiologia , Redes Reguladoras de Genes , Córtex Pré-Frontal/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Perfilação da Expressão Gênica , Variação Genética , Sistema de Sinalização das MAP Quinases/genética , Masculino , Camundongos , Camundongos Endogâmicos/genética
20.
BMC Med ; 12: 73, 2014 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-24886127

RESUMO

BACKGROUND: Traditional diagnoses of major depressive disorder (MDD) suggested that the presence or absence of stress prior to onset results in either 'reactive' or 'endogenous' subtypes of the disorder, respectively. Several lines of research suggest that the biological underpinnings of 'reactive' or 'endogenous' subtypes may also differ, resulting in differential response to treatment. We investigated this hypothesis by comparing the gene-expression profiles of three animal models of 'reactive' and 'endogenous' depression. We then translated these findings to clinical samples using a human post-mortem mRNA study. METHODS: Affymetrix mouse whole-genome oligonucleotide arrays were used to measure gene expression from hippocampal tissues of 144 mice from the Genome-based Therapeutic Drugs for Depression (GENDEP) project. The study used four inbred mouse strains and two depressogenic 'stress' protocols (maternal separation and Unpredictable Chronic Mild Stress) to model 'reactive' depression. Stress-related mRNA differences in mouse were compared with a parallel mRNA study using Flinders Sensitive and Resistant rat lines as a model of 'endogenous' depression. Convergent genes differentially expressed across the animal studies were used to inform candidate gene selection in a human mRNA post-mortem case control study from the Stanley Brain Consortium. RESULTS: In the mouse 'reactive' model, the expression of 350 genes changed in response to early stresses and 370 in response to late stresses. A minimal genetic overlap (less than 8.8%) was detected in response to both stress protocols, but 30% of these genes (21) were also differentially regulated in the 'endogenous' rat study. This overlap is significantly greater than expected by chance. The VAMP-2 gene, differentially expressed across the rodent studies, was also significantly altered in the human study after correcting for multiple testing. CONCLUSIONS: Our results suggest that 'endogenous' and 'reactive' subtypes of depression are associated with largely distinct changes in gene-expression. However, they also suggest that the molecular signature of 'reactive' depression caused by early stressors differs considerably from that of 'reactive' depression caused by late stressors. A small set of genes was consistently dysregulated across each paradigm and in post-mortem brain tissue of depressed patients suggesting a final common pathway to the disorder. These genes included the VAMP-2 gene, which has previously been associated with Axis-I disorders including MDD, bipolar depression, schizophrenia and with antidepressant treatment response. We also discuss the implications of our findings for disease classification, personalized medicine and case-control studies of MDD.


Assuntos
Transtornos de Adaptação/genética , Transtorno Depressivo Maior/genética , Transtorno Depressivo/genética , Modelos Animais de Doenças , Regulação da Expressão Gênica , Estresse Psicológico/genética , Animais , Antidepressivos/uso terapêutico , Encéfalo/patologia , Estudos de Casos e Controles , Depressão/diagnóstico , Depressão/genética , Transtorno Depressivo/diagnóstico , Transtorno Depressivo Maior/classificação , Feminino , Expressão Gênica , Hipocampo , Humanos , Masculino , Privação Materna , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos , RNA Mensageiro/análise , RNA Mensageiro/genética , Ratos , Proteína 2 Associada à Membrana da Vesícula/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA