RESUMO
Here, a straightforward method is reported for manufacturing 3D microstructured cell-adhesive and cell-repellent multimaterials using two-photon laser printing. Compared to existing strategies, this approach offers bottom-up molecular control, high customizability, and rapid and precise 3D fabrication. The printable cell-adhesive polyethylene glycol (PEG) based material includes an Arg-Gly-Asp (RGD) containing peptide synthesized through solid-phase peptide synthesis, allowing for precise control of the peptide design. Remarkably, minimal amounts of RGD peptide (< 0.1 wt%) suffice for imparting cell-adhesiveness, while maintaining identical mechanical properties in the 3D printed microstructures to those of the cell-repellent, PEG-based material. Fluorescent labeling of the RGD peptide facilitates visualization of its presence in cell-adhesive areas. To demonstrate the broad applicability of the system, the fabrication of cell-adhesive 2.5D and 3D structures is shown, fostering the adhesion of fibroblast cells within these architectures. Thus, this approach allows for the printing of high-resolution, true 3D structures suitable for diverse applications, including cellular studies in complex environments.
Assuntos
Adesão Celular , Hidrogéis , Lasers , Oligopeptídeos , Polietilenoglicóis , Impressão Tridimensional , Hidrogéis/química , Oligopeptídeos/química , Polietilenoglicóis/química , Animais , Camundongos , Fibroblastos/citologiaRESUMO
Outbreaks of foodborne diseases are regularly reported worldwide. In particular, uncooked plant food is considered risky in terms of microbiological safety. Food is also the most important transmission route for resistant microorganisms from animals to humans. Photodynamic Decontamination (PDc) of foodstuff was recently introduced as a novel approach for increasing microbiological food safety. We investigated the efficiency of PDc on plant food with different geometries (flat, spherical and complex) using a two-dimensional LED array as a light source (435 nm, 33.8 J cm-2) and the cationic curcumin derivative SACUR-3 as a photosensitiser. A photoantibacterial effect (>3 log10 CFU reduction) was achieved on all flat substrates (slices of cucumber, tomato and lettuce) with 10 µM, 50 µM or 100 µM SACUR-3. The maximal photokilling with a relative inactivation of 5.6 log10 was measured on lettuce using 50 µM of the photoactive compound. Phototreatment of non-germinated fenugreek seeds and mung beans was successful if the spherical objects were rotated while under illumination (antibacterial effect at 100 µM SACUR-3). The decontamination of mung bean germlings with a more complex geometry using the PDc approach was ineffective with the two-dimensional light source. In conclusion, PDc based on the cationic curcumin derivative SACUR-3 is very effective at improving the microbiological safety of plant food with a flat or spherical geometry. More complex objects will require the development of novel illumination devices.
Assuntos
Antibacterianos/química , Curcumina/química , Fármacos Fotossensibilizantes/química , Antibacterianos/farmacologia , Cucumis sativus/microbiologia , Curcumina/análogos & derivados , Curcumina/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/efeitos da radiação , Microbiologia de Alimentos , Lactuca/microbiologia , Luz , Solanum lycopersicum/microbiologia , Fármacos Fotossensibilizantes/farmacologiaRESUMO
Little is known about the contribution of 3D surface geometry to the development of multilayered tissues containing fibrous extracellular matrix components, such as those found in bone. In this study, we elucidate the role of curvature in the formation of chiral, twisted-plywood-like structures. Tissues consisting of murine preosteoblast cells (MC3T3-E1) were grown on 3D scaffolds with constant-mean curvature and negative Gaussian curvature for up to 32 days. Using 3D fluorescence microscopy, the influence of surface curvature on actin stress-fiber alignment and chirality was investigated. To gain mechanistic insights, we did experiments with MC3T3-E1 cells deficient in nuclear A-type lamins or treated with drugs targeting cytoskeleton proteins. We find that wild-type cells form a thick tissue with fibers predominantly aligned along directions of negative curvature, but exhibiting a twist in orientation with respect to older tissues. Fiber orientation is conserved below the tissue surface, thus creating a twisted-plywood-like material. We further show that this alignment pattern strongly depends on the structural components of the cells (A-type lamins, actin, and myosin), showing a role of mechanosensing on tissue organization. Our data indicate the importance of substrate curvature in the formation of 3D tissues and provide insights into the emergence of chirality.
RESUMO
The integration of additive manufacturing technologies with the pyrolysis of polymeric precursors enables the design-controlled fabrication of architected 3D pyrolytic carbon (PyC) structures with complex architectural details. Despite great promise, their use in cellular interaction remains unexplored. This study pioneers the utilization of microarchitected 3D PyC structures as biocompatible scaffolds for the colonization of muscle cells in a 3D environment. PyC scaffolds are fabricated using micro-stereolithography, followed by pyrolysis. Furthermore, an innovative design strategy using revolute joints is employed to obtain novel, compliant structures of architected PyC. The pyrolysis process results in a pyrolysis temperature- and design-geometry-dependent shrinkage of up to 73%, enabling the geometrical features of microarchitected compatible with skeletal muscle cells. The stiffness of architected PyC varies with the pyrolysis temperature, with the highest value of 29.57 ± 0.78 GPa for 900 °C. The PyC scaffolds exhibit excellent biocompatibility and yield 3D cell colonization while culturing skeletal muscle C2C12 cells. They further induce good actin fiber alignment along the compliant PyC construction. However, no conclusive myogenic differentiation is observed here. Nevertheless, these results are highly promising for architected PyC scaffolds as multifunctional tissue implants and encourage more investigations in employing compliant architected PyC structures for high-performance tissue engineering applications.
Assuntos
Engenharia Tecidual , Alicerces Teciduais , Alicerces Teciduais/química , Engenharia Tecidual/métodos , Carbono , Células Musculares , Impressão TridimensionalRESUMO
Surface curvature both emerges from, and influences the behavior of, living objects at length scales ranging from cell membranes to single cells to tissues and organs. The relevance of surface curvature in biology is supported by numerous experimental and theoretical investigations in recent years. In this review, first, a brief introduction to the key ideas of surface curvature in the context of biological systems is given and the challenges that arise when measuring surface curvature are discussed. Giving an overview of the emergence of curvature in biological systems, its significance at different length scales becomes apparent. On the other hand, summarizing current findings also shows that both single cells and entire cell sheets, tissues or organisms respond to curvature by modulating their shape and their migration behavior. Finally, the interplay between the distribution of morphogens or micro-organisms and the emergence of curvature across length scales is addressed with examples demonstrating these key mechanistic principles of morphogenesis. Overall, this review highlights that curved interfaces are not merely a passive by-product of the chemical, biological, and mechanical processes but that curvature acts also as a signal that co-determines these processes.
Assuntos
Fenômenos Mecânicos , Membrana Celular , MorfogêneseRESUMO
Fungal infections in humans, contamination of food and structural damage to buildings by fungi are associated with high costs for the general public. In addition, the increase in antifungal resistance towards conventional treatment raises the demand for new fungicidal methods. Here, we present the antifungal use of Photodynamic Inactivation (PDI) based on the natural photosensitizer curcumin and a water-soluble positively charged derivative thereof (SA-CUR 12a) against two different model organisms; Candida albicans grown in a liquid culture and photo treated with a 435 nm LED light followed by counting of the colony-forming units and photoinactivation of tissue-like hyphal spheres of Aspergillus niger (diameter ~5 mm) with subsequent monitoring of colony growth. Curcumin (50 µM, no incubation period, i.p.) supplemented with 10% or 0.5% DMSO as well as SA-CUR 12a (50 µM no i.p or 5 min i.p.) triggered a photoantifungal effect of >4 log units towards C. albicans. At 100 µM, SA-CUR 12a (0 min or 5 min i.p.) achieved a reduction of >6 log units. Colonies of A. niger shrunk significantly during PDI treatment. Photoinactivation with 50 µM or 100 µM curcumin (+0.5% DMSO) resulted in complete growth inhibition. PDI using 20, 50 or 100 µM SA-CUR 12a (with or without 10% DMSO) also showed a significant reduction in colony area compared to the control after 48 h, although less pronounced compared to curcumin. In summary, PDI using curcumin or SA-CUR 12a against C. albicans or A. niger is a promising alternative to currently used fungicides, with the advantage of being very unlikely to induce resistance.