Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Revista
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 563(7733): E31, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30377312

RESUMO

Change history: In this Letter, author M. Akhlaghi should be associated with affiliation (2) rather than (3). This error has been corrected online.

2.
Nature ; 562(7726): 229-232, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30275476

RESUMO

Galaxies are surrounded by large reservoirs of gas, mostly hydrogen, that are fed by inflows from the intergalactic medium and by outflows from galactic winds. Absorption-line measurements along the lines of sight to bright and rare background quasars indicate that this circumgalactic medium extends far beyond the starlight seen in galaxies, but very little is known about its spatial distribution. The Lyman-α transition of atomic hydrogen at a wavelength of 121.6 nanometres is an important tracer of warm (about 104 kelvin) gas in and around galaxies, especially at cosmological redshifts greater than about 1.6 at which the spectral line becomes observable from the ground. Tracing cosmic hydrogen through its Lyman-α emission has been a long-standing goal of observational astrophysics1-3, but the extremely low surface brightness of the spatially extended emission is a formidable obstacle. A new window into circumgalactic environments was recently opened by the discovery of ubiquitous extended Lyman-α emission from hydrogen around high-redshift galaxies4,5. Such measurements were previously limited to especially favourable systems6-8 or to the use of massive statistical averaging9,10 because of the faintness of this emission. Here we report observations of low-surface-brightness Lyman-α emission surrounding faint galaxies at redshifts between 3 and 6. We find that the projected sky coverage approaches 100 per cent. The corresponding rate of incidence (the mean number of Lyman-α emitters penetrated by any arbitrary line of sight) is well above unity and similar to the incidence rate of high-column-density absorbers frequently detected in the spectra of distant quasars11-14. This similarity suggests that most circumgalactic atomic hydrogen at these redshifts has now been detected in emission.

3.
Nature ; 558(7710): 406-409, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29925969

RESUMO

It has been known for decades that the observed number of baryons in the local Universe falls about 30-40 per cent short1,2 of the total number of baryons predicted 3 by Big Bang nucleosynthesis, as inferred4,5 from density fluctuations of the cosmic microwave background and seen during the first 2-3 billion years of the Universe in the so-called 'Lyman α forest'6,7 (a dense series of intervening H I Lyman α absorption lines in the optical spectra of background quasars). A theoretical solution to this paradox locates the missing baryons in the hot and tenuous filamentary gas between galaxies, known as the warm-hot intergalactic medium. However, it is difficult to detect them there because the largest by far constituent of this gas-hydrogen-is mostly ionized and therefore almost invisible in far-ultraviolet spectra with typical signal-to-noise ratios8,9. Indeed, despite large observational efforts, only a few marginal claims of detection have been made so far2,10. Here we report observations of two absorbers of highly ionized oxygen (O VII) in the high-signal-to-noise-ratio X-ray spectrum of a quasar at a redshift higher than 0.4. These absorbers show no variability over a two-year timescale and have no associated cold absorption, making the assumption that they originate from the quasar's intrinsic outflow or the host galaxy's interstellar medium implausible. The O VII systems lie in regions characterized by large (four times larger than average 11 ) galaxy overdensities and their number (down to the sensitivity threshold of our data) agrees well with numerical simulation predictions for the long-sought warm-hot intergalactic medium. We conclude that the missing baryons have been found.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA