Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Neurobiol Learn Mem ; 93(3): 444-53, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20074654

RESUMO

In women, medroxyprogesterone acetate (MPA) is the most commonly used progestin component of hormone therapy (HT). In vitro, MPA negatively impacts markers of neuronal health and exacerbates experimentally-induced neurotoxicity. There is in vitro evidence that these factors are driven by GABAergic and neurotrophic systems. Whether these effects translate to a negative impact on brain function has not been tested in vivo, clinically or preclinically. Here we evaluate the mnemonic and neurobiological effects of MPA in the surgically menopausal rat. Aged ovariectomized (OVX) rats were given subcutaneous vehicle, natural progesterone, low-dose MPA or high-dose MPA. Multiple cognitive domains were analyzed via the water radial-arm maze (WRAM) and Morris maze (MM). Cognitive brain regions were assayed for changes in the GABAergic system by evaluating GAD protein, the synthesizing enzyme for GABA, and neurotrophins. On the WRAM, both progestin types impaired learning. Further, high-dose MPA impaired delayed memory retention on the WRAM, and exacerbated overnight forgetting on the MM. While neurotrophins were not affected by progesterone or MPA treatment, both progestin types altered GAD levels. MPA significantly and progesterone marginally decreased GAD levels in the hippocampus, and both MPA and progesterone significantly increased GAD levels in the entorhinal cortex. These findings suggest that MPA, the most commonly used progestin in HT, is detrimental to learning and two types of memory, and modulates the GABAergic system in cognitive brain regions, in aged surgically menopausal rats. These findings, combined with in vitro evidence that MPA is detrimental to neuronal health, indicates that MPA has negative effects for brain health and function.


Assuntos
Anticoncepcionais Femininos/efeitos adversos , Acetato de Medroxiprogesterona/efeitos adversos , Transtornos da Memória/induzido quimicamente , Ácido gama-Aminobutírico/metabolismo , Animais , Feminino , Hipocampo/efeitos dos fármacos , Transtornos da Memória/diagnóstico , Menopausa , Ovariectomia , Ratos , Ratos Endogâmicos F344
2.
Neurosci Biobehav Rev ; 86: 226-238, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29154939

RESUMO

A comprehensive explanation is lacking for the broad array of cognitive effects modulated by transcranial direct current stimulation (tDCS). We advanced the testable hypothesis that tDCS to the default mode network (DMN) increases processing of goals and stored information at the expense of external events. We further hypothesized that tDCS to the dorsal attention network (DAN) increases processing of external events at the expense of goals and stored information. A literature search (PsychINFO) identified 42 empirical studies and 3 meta-analyses examining effects of prefrontal and/or parietal tDCS on tasks that selectively required external and/or internal processing. Most, though not all, of the studies that met our search criteria supported our hypothesis. Three meta-analyses supported our hypothesis. The hypothesis we advanced provides a framework for the design and interpretation of results in light of the role of large-scale intrinsic networks that govern attention.


Assuntos
Atenção/fisiologia , Cognição/fisiologia , Vias Neurais/fisiologia , Lobo Parietal/fisiologia , Teoria Psicológica , Estimulação Transcraniana por Corrente Contínua , Humanos , Córtex Pré-Frontal/fisiologia
3.
Hum Factors ; 57(6): 1051-62, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26342062

RESUMO

OBJECTIVE: The authors determine whether transcranial direct current stimulation (tDCS) can reduce resumption time when an ongoing task is interrupted. BACKGROUND: Interruptions are common and disruptive. Working memory capacity has been shown to predict resumption lag (i.e., time to successfully resume a task after interruption). Given that tDCS applied to brain areas associated with working memory can enhance performance, tDCS has the potential to improve resumption lag when a task is interrupted. METHOD: Participants were randomly assigned to one of four groups that received anodal (active) stimulation of 2 mA tDCS to one of two target brain regions, left and right dorsolateral prefrontal cortex (DLPFC), or to one of two control areas, active stimulation of the left primary motor cortex or sham stimulation of the right DLPFC, while completing a financial management task that was intermittently interrupted with math problem solving. RESULTS: Anodal stimulation to the right and left DLPFC significantly reduced resumption lags compared to the control conditions (sham and left motor cortex stimulation). Additionally, there was no speed-accuracy tradeoff (i.e., the improvement in resumption time was not accompanied by an increased error rate). CONCLUSION: Noninvasive brain stimulation can significantly decrease resumption lag (improve performance) after a task is interrupted. APPLICATION: Noninvasive brain stimulation offers an easy-to-apply tool that can significantly improve interrupted task performance.


Assuntos
Memória de Curto Prazo/fisiologia , Córtex Motor/fisiologia , Córtex Pré-Frontal/fisiologia , Desempenho Psicomotor/fisiologia , Estimulação Magnética Transcraniana/métodos , Adolescente , Adulto , Feminino , Humanos , Masculino , Distribuição Aleatória , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA