Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 130
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
BMC Genomics ; 25(1): 726, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39060982

RESUMO

BACKGROUND: A heterozygous-enriched region (HER) is a genomic region with high variability generated by factors such as balancing selection, introgression, and admixture processes. In this study, we evaluated the genomic background of HERs and the impact of different parameters (i.e., minimum number of SNPs in a HER, maximum distance between two consecutive SNPs, minimum length of a HER, maximum number of homozygous allowed in a HER) and scenarios [i.e., different SNP panel densities and whole-genome sequence (WGS)] on the detection of HERs. We also compared HERs characterized in Holstein cattle with those identified in Angus, Jersey, and Norwegian Red cattle using WGS data. RESULTS: The parameters used for the identification of HERs significantly impact their detection. The maximum distance between two consecutive SNPs did not impact HERs detection as the same average of HERs (269.31 ± 787.00) was observed across scenarios. However, the minimum number of markers, maximum homozygous markers allowed inside a HER, and the minimum length size impacted HERs detection. For the minimum length size, the 10 Kb scenario showed the highest average number of HERs (1,364.69 ± 1,483.64). The number of HERs decreased as the minimum number of markers increased (621.31 ± 1,271.83 to 6.08 ± 21.94), and an opposite pattern was observed for the maximum homozygous markers allowed inside a HER (54.47 ± 195.51 to 494.89 ± 1,169.35). Forty-five HER islands located in 23 chromosomes with high Tajima's D values and differential among the observed and estimated heterozygosity were detected in all evaluated scenarios, indicating their ability to potentially detect regions under balancing selection. In total, 3,440 markers and 28 genes previously related to fertility (e.g., TP63, ZSCAN23, NEK5, ARHGAP44), immunity (e.g., TP63, IGC, ARHGAP44), residual feed intake (e.g., MAYO9A), stress sensitivity (e.g., SERPINA6), and milk fat percentage (e.g., NOL4) were identified. When comparing HER islands among breeds, there were substantial overlaps between Holstein with Angus (95.3%), Jersey (94.3%), and Norwegian Red cattle (97.1%), indicating conserved HER across taurine breeds. CONCLUSIONS: The detection of HERs varied according to the parameters used, but some HERs were consistently identified across all scenarios. Heterozygous genotypes observed across generations and breeds appear to be conserved in HERs. The results presented could serve as a guide for defining HERs detection parameters and further investigating their biological roles in future studies.


Assuntos
Heterozigoto , Polimorfismo de Nucleotídeo Único , Sequenciamento Completo do Genoma , Animais , Bovinos/genética , Sequenciamento Completo do Genoma/métodos , Análise de Sequência com Séries de Oligonucleotídeos , Genoma , Genômica/métodos
2.
BMC Genomics ; 25(1): 623, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902640

RESUMO

BACKGROUND: The genotype-by-environment interaction (GxE) in beef cattle can be investigated using reaction norm models to assess environmental sensitivity and, combined with genome-wide association studies (GWAS), to map genomic regions related to animal adaptation. Including genetic markers from whole-genome sequencing in reaction norm (RN) models allows us to identify high-resolution candidate genes across environmental gradients through GWAS. Hence, we performed a GWAS via the RN approach using whole-genome sequencing data, focusing on mapping candidate genes associated with the expression of reproductive and growth traits in Nellore cattle. For this purpose, we used phenotypic data for age at first calving (AFC), scrotal circumference (SC), post-weaning weight gain (PWG), and yearling weight (YW). A total of 20,000 males and 7,159 females genotyped with 770k were imputed to the whole sequence (29 M). After quality control and linkage disequilibrium (LD) pruning, there remained ∼ 2.41 M SNPs for SC, PWG, and YW and ∼ 5.06 M SNPs for AFC. RESULTS: Significant SNPs were identified on Bos taurus autosomes (BTA) 10, 11, 14, 18, 19, 20, 21, 24, 25 and 27 for AFC and on BTA 4, 5 and 8 for SC. For growth traits, significant SNP markers were identified on BTA 3, 5 and 20 for YW and PWG. A total of 56 positional candidate genes were identified for AFC, 9 for SC, 3 for PWG, and 24 for YW. The significant SNPs detected for the reaction norm coefficients in Nellore cattle were found to be associated with growth, adaptative, and reproductive traits. These candidate genes are involved in biological mechanisms related to lipid metabolism, immune response, mitogen-activated protein kinase (MAPK) signaling pathway, and energy and phosphate metabolism. CONCLUSIONS: GWAS results highlighted differences in the physiological processes linked to lipid metabolism, immune response, MAPK signaling pathway, and energy and phosphate metabolism, providing insights into how different environmental conditions interact with specific genes affecting animal adaptation, productivity, and reproductive performance. The shared genomic regions between the intercept and slope are directly implicated in the regulation of growth and reproductive traits in Nellore cattle raised under different environmental conditions.


Assuntos
Interação Gene-Ambiente , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Reprodução , Sequenciamento Completo do Genoma , Animais , Bovinos/genética , Bovinos/crescimento & desenvolvimento , Reprodução/genética , Feminino , Masculino , Genótipo , Fenótipo , Locos de Características Quantitativas , Desequilíbrio de Ligação
3.
J Dairy Sci ; 107(4): 2207-2230, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37939841

RESUMO

Hoof diseases are a major welfare and economic issue in the global dairy cattle production industry, which can be minimized through improved management and breeding practices. Optimal genetic improvement of hoof health could benefit from a deep understanding of the genetic background and biological underpinning of indicators of hoof health. Therefore, the primary objectives of this study were to perform genome-wide association studies, using imputed high-density genetic markers data from North American Holstein cattle, for 8 hoof-related traits: digital dermatitis, sole ulcer, sole hemorrhage, white line lesion, heel horn erosion, interdigital dermatitis, interdigital hyperplasia, and toe ulcer, and a hoof health index. De-regressed estimated breeding values from 25,580 Holstein animals were used as pseudo-phenotypes for the association analyses. The genomic quality control, genotype phasing, and genotype imputation were performed using the PLINK (version 1.9), Eagle (version 2.4.1), and Minimac4 software, respectively. The functional genomic analyses were performed using the GALLO R package and the DAVID platform. We identified 22, 34, 14, 22, 28, 33, 24, 43, and 15 significant markers for digital dermatitis, heel horn erosion, interdigital dermatitis, interdigital hyperplasia, sole hemorrhage, sole ulcer, toe ulcer, white line lesion disease, and the hoof health index, respectively. The significant markers were located across all autosomes, except BTA10, BTA12, BTA20, BTA26, BTA27, and BTA28. Moreover, the genomic regions identified overlap with various previously reported quantitative trait loci for exterior, health, meat and carcass, milk, production, and reproduction traits. The enrichment analyses identified 44 significant gene ontology terms. These enriched genomic regions harbor various candidate genes previously associated with bone development, metabolism, and infectious and immunological diseases. These findings indicate that hoof health traits are highly polygenic and influenced by a wide range of biological processes.


Assuntos
Doenças dos Bovinos , Dermatite , Dermatite Digital , Doenças do Pé , Úlcera do Pé , Casco e Garras , Úlcera Cutânea , Bovinos/genética , Animais , Doenças do Pé/genética , Doenças do Pé/veterinária , Estudo de Associação Genômica Ampla/veterinária , Dermatite Digital/genética , Úlcera/veterinária , Hiperplasia/veterinária , Doenças dos Bovinos/genética , Fenótipo , Úlcera do Pé/veterinária , Genômica , Dermatite/veterinária , Hemorragia/veterinária , América do Norte
4.
J Dairy Sci ; 107(10): 8193-8204, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38908714

RESUMO

The rumen microbiome is crucial for converting feed into absorbable nutrients used for milk synthesis, and the efficiency of this process directly affects the profitability and sustainability of the dairy industry. Recent studies have found that the rumen microbial composition explains part of the variation in feed efficiency traits, including dry matter intake, milk energy, and residual feed intake. The main goal of this study was to reveal relationships between the host genome, the rumen microbiome, and dairy cow feed efficiency using structural equation models. Our specific objectives were to (1) infer the mediation effects of the rumen microbiome on feed efficiency traits, (2) estimate the direct and total heritability of feed efficiency traits, and (3) calculate the direct and total breeding values of feed efficiency traits. Data consisted of dry matter intake, milk energy, and residual feed intake records, SNP genotype data, and 16S rRNA rumen microbial abundances from 448 mid-lactation Holstein cows from 2 research farms. We implemented structural equation models such that the host genome directly affects the phenotype (GP → P) and the rumen microbiome (GM → P), and the microbiome affects the phenotype (M → P), partially mediating the effect of the host genome on the phenotype (G → M → P). We found that 7% to 30% of microbes within the rumen microbial community had structural coefficients different from zero. We classified these microbes into 3 groups that could have different uses in dairy farming. Microbes with heritability <0.10 but significant causal effects on feed efficiency are attractive for external interventions. On the other hand, 2 groups of microbes with heritability ≥0.10, significant causal effects, and genetic covariances and causal effects with the same or opposite sign to feed efficiency are attractive for selective breeding, improving or decreasing the trait heritability and response to selection, respectively. In general, the inclusion of the different microbes in genomic models tends to decrease the trait heritability rather than increase it, ranging from -15% to +5% depending on the microbial group and phenotypic trait. Our findings provide more understanding to target rumen microbes that can be manipulated, either through selection or management interventions, in order to improve feed efficiency traits.


Assuntos
Ração Animal , Microbiota , Rúmen , Animais , Bovinos , Rúmen/microbiologia , Feminino , Microbiota/genética , Leite , Lactação , Fenótipo , Genoma
5.
J Dairy Sci ; 107(9): 7052-7063, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38788846

RESUMO

This study aimed to evaluate the impact of copy number variants (CNV) on 13 reproduction and 12 disease traits in Holstein cattle. Intensity signal files containing log R ratio and B allele frequency information from 13,730 Holstein animals genotyped with a 95K SNP panel, and 8,467 Holstein animals genotyped with a 50K SNP panel were used to identify the CNVs. Subsequently, the identified CNVs were validated using whole-genome sequence data from 126 animals, resulting in 870 high-confidence copy number variant regions (CNVR) on 12,131 animals. Out of these, 54 CNVR had frequencies higher than or equal to 1% in the population and were used in the genome-wide association analysis (one CNVR at a time, including the G matrix). Results revealed that 4 CNVR were significantly associated with at least one of the traits analyzed in this study. Specifically, 2 CNVR were associated with 3 reproduction traits (i.e., calf survival, first service to conception, and nonreturn rate), and 2 CNVR were associated with 2 disease traits (i.e., metritis and retained placenta). These CNVR harbored genes implicated in immune response, cellular signaling, and neuronal development, supporting their potential involvement in these traits. Further investigations to unravel the mechanistic and functional implications of these CNVR on the mentioned traits are warranted.


Assuntos
Variações do Número de Cópias de DNA , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Reprodução , Animais , Bovinos/genética , Estudo de Associação Genômica Ampla/veterinária , Reprodução/genética , Genótipo , Doenças dos Bovinos/genética , Feminino , Fenótipo , Canadá , Frequência do Gene
6.
J Dairy Sci ; 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39218064

RESUMO

Traits related to calving have a significant impact on animal welfare and farm profitability in dairy production systems. Identifying genomic regions associated with calving traits could contribute to refining dairy cattle breeding programs and management practices in the dairy industry. Therefore, the primary objectives of this study were to estimate genetic parameters and perform genome-wide association studies (GWAS) and functional enrichment analyses for stillbirth, gestation length, calf size, and calving ease traits in North American Jersey cattle. A total of 40,503 animals with phenotypic records and 5,398 animals genotyped for 45,101 single nucleotide polymorphisms (SNPs) were included in the analyses. Genetic parameters were estimated based on animal models and Bayesian methods. The effects of SNPs were estimated using the Single-step Genomic Best Linear Unbiased Prediction (ssGBLUP) method. The heritability (standard error) estimates ranged from 0.01 (0.01) for stillbirths (SB) in heifers to 0.11 (0.01) for gestation length (GL) in cows. The genetic correlations ranged from -0.58 (0.11) between calving ease (CE) and SB in heifers to 0.44 (0.14) between calving ease and calf size (CZ) in cows. CE showed the highest genetic correlation between heifers and cows, 0.8 (0.22) respectively. The candidate genes identified, including MTHFR, SERPINA5, IGFBP3, and ZRANB1, are involved in key biological processes and metabolic pathways related to the studied traits. Reducing environmental variation and identifying novel indicators of reproduction traits in the Jersey breed are needed given the low heritability estimates for most traits evaluated in this study. In conclusion, this study provides a characterization of the genetic background of calving-related traits in Jersey cattle. The estimates obtained can be used to improve or build selection indexes in Jersey cattle breeding programs in North America.

7.
J Dairy Sci ; 107(5): 3090-3103, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38135048

RESUMO

It is now widely accepted that dairy cow performance is influenced by both the host genome and rumen microbiome composition. The contributions of the genome and the microbiome to the phenotypes of interest are quantified by heritability (h2) and microbiability (m2), respectively. However, if the genome and microbiome are included in the model, then the h2 reflects only the contribution of the direct genetic effects quantified as direct heritability (hd2), and the holobiont effect reflects the joint action of the genome and the microbiome, quantified as the holobiability (ho2). The objectives of this study were to estimate h2, hd2,m2, and ho2 for dry matter intake, milk energy, and residual feed intake; and to evaluate the predictive ability of different models, including genome, microbiome, and their interaction. Data consisted of feed efficiency records, SNP genotype data, and 16S rRNA rumen microbial abundances from 448 mid-lactation Holstein cows from 2 research farms. Three kernel models were fit to each trait: one with only the genomic effect (model G), one with the genomic and microbiome effects (model GM), and one with the genomic, microbiome, and interaction effects (model GMO). The model GMO, or holobiont model, showed the best goodness-of-fit. The hd2 estimates were always 10% to 15% lower than h2 estimates for all traits, suggesting a mediated genetic effect through the rumen microbiome, and m2 estimates were moderate for all traits, and up to 26% for milk energy. The ho2 was greater than the sum of hd2 and m2, suggesting that the genome-by-microbiome interaction had a sizable effect on feed efficiency. Kernel models fitting the rumen microbiome (i.e., models GM and GMO) showed larger predictive correlations and smaller prediction bias than the model G. These findings reveal a moderate contribution of the rumen microbiome to feed efficiency traits in lactating Holstein cows and strongly suggest that the rumen microbiome mediates part of the host genetic effect.


Assuntos
Lactação , Microbiota , Feminino , Bovinos , Animais , Rúmen , RNA Ribossômico 16S , Leite , Fenótipo , Ração Animal , Dieta/veterinária
8.
J Dairy Sci ; 107(3): 1510-1522, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37690718

RESUMO

The Resilient Dairy Genome Project (RDGP) is an international large-scale applied research project that aims to generate genomic tools to breed more resilient dairy cows. In this context, improving feed efficiency and reducing greenhouse gases from dairy is a high priority. The inclusion of traits related to feed efficiency (e.g., dry matter intake [DMI]) or greenhouse gases (e.g., methane emissions [CH4]) relies on available genotypes as well as high quality phenotypes. Currently, 7 countries (i.e., Australia, Canada, Denmark, Germany, Spain, Switzerland, and United States) contribute with genotypes and phenotypes including DMI and CH4. However, combining data are challenging due to differences in recording protocols, measurement technology, genotyping, and animal management across sources. In this study, we provide an overview of how the RDGP partners address these issues to advance international collaboration to generate genomic tools for resilient dairy. Specifically, we describe the current state of the RDGP database, data collection protocols in each country, and the strategies used for managing the shared data. As of February 2022, the database contains 1,289,593 DMI records from 12,687 cows and 17,403 CH4 records from 3,093 cows and continues to grow as countries upload new data over the coming years. No strong genomic differentiation between the populations was identified in this study, which may be beneficial for eventual across-country genomic predictions. Moreover, our results reinforce the need to account for the heterogeneity in the DMI and CH4 phenotypes in genomic analysis.


Assuntos
Gases de Efeito Estufa , Feminino , Animais , Bovinos , Genômica , Genótipo , Austrália , Metano
9.
J Anim Breed Genet ; 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38783641

RESUMO

Ketosis, evidenced by hyperketonemia with elevated blood ß-hydroxybutyrate (BHB) levels, is a significant metabolic disorder of dairy cattle, typically diagnosed within the first 6 weeks post-calving when high energy levels are essential to milk production. Our study aimed to identify genetic markers linked to hyperketonemia (HYK) patterns in Holstein cows during early lactation and compare these to HYK-negative cows. We screened 964 cows for HYK using a threshold of BHB ≥1.2 mmol/L during the first 2 weeks postpartum (screening period, SP). Cows that tested negative initially were retested the following week. Cows were deemed HYK-negative (CON group) if BHB levels were below 1.2 mmol/L in both tests, while those with BHB levels exceeding this threshold at any test were treated and classified as HYK-positive (HYK+). Post-treatment, HYK+ cows were monitored for two-week follow-up period (FP) and classified based on their recovery: cured (CUR; consistently low BHB), recurrent (REC; fluctuating BHB levels), severe (SEV; high initial BHB that decreased), or chronic (CHR; persistently high BHB). Using 489 cows that were genotyped, a GWAS was conducted using GCTA software, revealing significant associations of several SNPs across different HYK patterns when compared to the CON group. These SNPs were primarily linked to genes affecting milk traits and were enriched in biological pathways relevant to protein glycosylation, inflammatory response, glucose homeostasis, and fatty acid synthesis. Our findings highlight genomic regions, potential candidate genes, and biological pathways related to ketosis, underscoring potential targets for improving health management in dairy cattle. These insights could lead to better strategies for managing ketosis through genetic selection, ultimately enhancing dairy cattle welfare and productivity. Further research with a larger number of cows is recommended to validate these findings and help confirm the implicated SNPs and genes.

10.
BMC Genomics ; 24(1): 383, 2023 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-37422635

RESUMO

BACKGROUND: Biological mechanisms affecting gametogenesis, embryo development and postnatal viability have the potential to alter Mendelian inheritance expectations resulting in observable transmission ratio distortion (TRD). Although the discovery of TRD cases have been around for a long time, the current widespread and growing use of DNA technologies in the livestock industry provides a valuable resource of large genomic data with parent-offspring genotyped trios, enabling the implementation of TRD approach. In this research, the objective is to investigate TRD using SNP-by-SNP and sliding windows approaches on 441,802 genotyped Holstein cattle and 132,991 (or 47,910 phased) autosomal SNPs. RESULTS: The TRD was characterized using allelic and genotypic parameterizations. Across the whole genome a total of 604 chromosomal regions showed strong significant TRD. Most (85%) of the regions presented an allelic TRD pattern with an under-representation (reduced viability) of carrier (heterozygous) offspring or with the complete or quasi-complete absence (lethality) for homozygous individuals. On the other hand, the remaining regions with genotypic TRD patterns exhibited the classical recessive inheritance or either an excess or deficiency of heterozygote offspring. Among them, the number of most relevant novel regions with strong allelic and recessive TRD patterns were 10 and 5, respectively. In addition, functional analyses revealed candidate genes regulating key biological processes associated with embryonic development and survival, DNA repair and meiotic processes, among others, providing additional biological evidence of TRD findings. CONCLUSIONS: Our results revealed the importance of implementing different TRD parameterizations to capture all types of distortions and to determine the corresponding inheritance pattern. Novel candidate genomic regions containing lethal alleles and genes with functional and biological consequences on fertility and pre- and post-natal viability were also identified, providing opportunities for improving breeding success in cattle.


Assuntos
Desenvolvimento Embrionário , Padrões de Herança , Animais , Bovinos/genética , Genótipo , Heterozigoto , Alelos
11.
J Dairy Sci ; 106(2): 1168-1189, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36526463

RESUMO

Increasing the productivity of Canadian dairy goats is critical to the competitiveness of the sector; however, little is known about the underlying genetic architecture of economically important traits in these populations. Consequently, the objectives of this study were as follows: (1) to perform a single-step GWAS for milk production traits (milk, protein, and fat yields, and protein and fat percentages in first and later lactations) and conformation traits (body capacity, dairy character, feet and legs, fore udder, general appearance, rear udder, suspensory ligament, and teats) in the Canadian Alpine and Saanen breeds; and (2) to identify positional and functional candidate genes related to these traits. The data available for analysis included 305-d milk production records for 6,409 Alpine and 3,434 Saanen does in first lactation and 5,827 Alpine and 2,632 Saanen does in later lactations; as well as linear type conformation records for 5,158 Alpine and 2,342 Saanen does. Genotypes were available for 833 Alpine and 874 Saanen animals. Both single-breed and multiple-breed GWAS were performed using single-trait animal models. Positional and functional candidate genes were then identified in downstream analyses. The GWAS identified 189 unique SNP that were significant at the chromosomal level, corresponding to 271 unique positional candidate genes within 50 kb up- and downstream, across breeds and traits. This study provides evidence for the economic importance of several candidate genes (e.g., CSN1S1, CSN2, CSN1S2, CSN3, DGAT1, and ZNF16) in the Canadian Alpine and Saanen populations that have been previously reported in other dairy goat populations. Moreover, several novel positional and functional candidate genes (e.g., RPL8, DCK, and MOB1B) were also identified. Overall, the results of this study have provided greater insight into the genetic architecture of milk production and conformation traits in the Canadian Alpine and Saanen populations. Greater understanding of these traits will help to improve dairy goat breeding programs.


Assuntos
Estudo de Associação Genômica Ampla , Leite , Feminino , Animais , Estudo de Associação Genômica Ampla/veterinária , Canadá , Fenótipo , Lactação/genética , Cabras/genética
12.
J Dairy Sci ; 106(1): 323-351, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36333139

RESUMO

Mastitis, the most frequent disease in dairy cattle. Resistance to mastitis is a complex, polygenic trait controlled by several genes, each with small effects. Genome-wide association studies have been widely used to identify genomic variants associated with complex traits, including resistance to mastitis, to elucidate the underlying genetic architecture of the trait. However, no systematic review and gene prioritization analysis have been conducted to date on GWAS results for resistance to mastitis in dairy cattle. Hence, the objective was to perform a systematic review and gene prioritization analysis of GWAS studies to identify potential functional candidate genes associated with resistance to mastitis-related traits in dairy cattle. Four electronic databases were searched from inception to December 2020, supplemented with multiple sources of gray literature, to identify eligible articles. Annotation for genes and quantitative trait loci (QTL), and QTL enrichment analysis were conducted using GALLO. Gene prioritization analysis was performed by a guilty-by-association approach using GUILDify and ToppGene. From 52 articles included within this systematic review, 30 articles were used for further functional analyses. Gene and QTL annotation resulted in 9,125 and 43,646 unique genes and QTL, respectively, from 39 studies. In general, overlapping of genes across studies was very low (mean ± SD = 0.02% ± 0.07%). Most annotated genes were associated with somatic cell count-related traits and the Holstein breed. Within all annotated genes, 74 genes were shared among Holstein, Jersey, and Ayrshire breeds. Approximately 7.5% of annotated QTL were related to QTL class "health." Within the health QTL class, 2.6 and 2.2% of QTL were associated with clinical mastitis and somatic cell count-related traits. Enrichment analysis of QTL demonstrated that many enriched QTL were associated with somatic cell score located in Bos taurus autosomes 5, 6, 16, and 20. The prioritization analysis resulted in 427 significant genes after multiple test correction (false discovery rate of 5%) from 26 studies. Most prioritized genes were located in Bos taurus autosomes 19 and 7, and most top-ranked genes were from the cytokine superfamily (e.g., chemokines, interleukins, transforming growth factors, and tumor necrosis factor genes). Although most prioritized genes (397) were associated with somatic cell count-related traits, only 54 genes were associated with clinical mastitis-related traits. Twenty-four genes (ABCC9, ACHE, ADCYAP1, ARC, BCL2L1, CDKN1A, EPO, GABBR2, GDNF, GNRHR, IKBKE, JAG1, KCNJ8, KCNQ1, LIFR, MC3R, MYOZ3, NFKB1, OSMR, PPP3CA, PRLR, SHARPIN, SLC1A3, and TNFRSF25) were reported for both somatic cell count and clinical mastitis-related traits. Prioritized genes were mainly associated with immune response, regulation of secretion, locomotion, cell proliferation, and development. In conclusion, this study provided a fine-mapping of previously identified genomic regions associated with resistance to mastitis and identified key functional candidate genes for resistance to mastitis, which can be used to develop enhanced genomic strategies to combat mastitis by increasing mastitis resistance through genetic selection.


Assuntos
Doenças dos Bovinos , Mastite Bovina , Feminino , Bovinos/genética , Animais , Estudo de Associação Genômica Ampla/veterinária , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas/genética , Mastite Bovina/genética , Doenças dos Bovinos/genética
13.
Genomics ; 114(5): 110449, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35985612

RESUMO

Molecular responses to heat stress are multifaceted and under a complex cellular post-transcriptional control. This study explores the epigenetic and transcriptional alterations induced by heat stress (42 °C for 120 min) in the liver of rats, by integrating ATAC-seq, RNA-Seq, and WGBS information. Out of 2586 differential ATAC-seq peaks induced by heat stress, 36 up-regulated and 22 down-regulated transcript factors (TFs) are predicted, such as Cebpα, Foxa2, Foxo4, Nfya and Sp3. Furthermore, 150,189 differentially methylated regions represent 2571 differentially expressed genes (DEGs). By integrating all data, 45 DEGs are concluded as potential heat stress response markers in rats. To comprehensively annotate and narrow down predicted markers, they are integrated with GWAS results of heat stress parameters in cows, and PheWAS data in humans. Besides better understanding of heat stress responses in mammals, INSR, MAPK8, RHPN2 and BTBD7 are proposed as candidate markers for heat stress in mammals.


Assuntos
Epigenômica , Perfilação da Expressão Gênica , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Bovinos , Feminino , Fatores de Transcrição Forkhead/genética , Perfilação da Expressão Gênica/métodos , Genes Reguladores , Resposta ao Choque Térmico/genética , Humanos , Fígado , Mamíferos/genética , Ratos
14.
J Anim Breed Genet ; 140(5): 568-581, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37254293

RESUMO

The goal of this study was to investigate whether the inclusion of genomic information and epistatic (additive by additive) genetic effects would increase the accuracy of predicting phenotypes adjusted for known environmental effects, reduce prediction bias and minimize the confounding between additive and additive by additive epistatic effects on fertility and calving traits in Holstein cattle. Phenotypic and genotypic records were available for 6090 cows. Eight cow traits were assessed including 56-day nonreturn rate (NRR), number of services (NS), calving to first insemination (CTFS), first insemination to conception (FSTC), gestation length (GL), calving ease (CE), stillbirth (SB) and calf size (CZ). Four scenarios were assessed for their ability to predict adjusted phenotypes, which included: (1) traditional pedigree-based Best Linear Unbiased Prediction (P-BLUP) for additive genetic effects (PA); (2) P-BLUP for additive and epistatic (additive by additive) genetic effects (PAE); (3) genomic BLUP (G-BLUP) for additive genetic effects (GA); and (4) G-BLUP for additive and epistatic genetic effects (GAEn, where n = 1-3 depending on the alternative ways to construct the epistatic genomic matrix used). Constructing epistatic relationship matrix as the Hadamard product of the additive genomic relationship matrix (GAE1), which is the usual method and implicitly assumes a model that fits all pairwise interactions between markers twice and includes the interactions of the markers with themselves (dominance). Two additional constructions of the epistatic genomic relationship matrix were compared to test whether removing the double counting of interactions and the interaction of the markers with themselves (GAE2), and removing double counting of interactions between markers, but including the interaction of the markers with themselves (GAE3) would had an impact on the prediction and estimation error correlation (i.e. confounding) between additive and epistatic genetic effects. Fitting epistatic genetic effects explained up to 5.7% of the variance for NRR (GAE3), 7.7% for NS (GAE1), 11.9% for CTFS (GAE3), 11.1% for FSTC (GAE2), 25.7% for GL (GAE1), 2.3% for CE (GAE1), 14.3% for SB (GAE3) and 15.2% for CZ (GAE1). Despite a substantial proportion of variance being explained by epistatic effects for some traits, the prediction accuracies were similar or lower for GAE models compared with pedigree models and genomic models without epistatic effects. Although the prediction accuracy of direct genomic values did not change significantly between the three variations of the epistatic genetic relationship matrix used, removing the interaction of the markers with themselves reduced the confounding between additive and additive by additive epistatic effects. These results suggest that epistatic genetic effects contribute to the variance of some fertility and calving traits in Holstein cattle. However, the inclusion of epistatic genetic effects in the genomic prediction of these traits is complex and warrant further investigation.


Assuntos
Fertilidade , Genômica , Feminino , Bovinos/genética , Animais , Fertilidade/genética , Fenótipo , Genótipo , Linhagem
15.
J Anim Breed Genet ; 140(6): 624-637, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37350080

RESUMO

Non-additive genetic effects are well known to play an important role in the phenotypic expression of complex traits, such as fertility and reproduction. In this study, a genome scan was performed using 41,640 single nucleotide polymorphism (SNP) markers to identify genomic regions associated with epistatic (additive-by-additive) effects in fertility and reproduction traits in Holstein cattle. Nine fertility and reproduction traits were analysed on 5825 and 6090 Holstein heifers and cows with phenotypes and genotypes, respectively. The Marginal Epistasis Test (MAPIT) was used to identify SNPs with significant marginal epistatic effects at a chromosome-wise 5% and 10% false discovery rate (FDR) level. The -log10 (p) values were adjusted by the genomic inflation factor (λ) to correct for the potential bias on the p-values and minimize the possible effects of population stratification. After adjustments, MAPIT enabled the identification of genomic regions with significant marginal epistatic effects for heifers on BTA5 for age at first insemination, BTA3 and BTA24 for non-return rate (NRR); BTA16 and BTA28 for gestation length (GL); BTA1, BTA4 and BTA17 for stillbirth (SB). For the cow traits, MAPIT enabled the identification of regions on BTA11 for GL, BTA11 and BTA16 for SB and BTA19 for calf size (CZ). An additional approach for mapping epistasis in a genome-wide association study was also proposed, in which the genome scan was performed using estimates of epistatic values as the input pseudo-phenotypes, computed using single-trait animal models. Significant SNPs were identified at the chromosome-wise 5% and 10% FDR levels for all traits. For the heifer traits, significant regions were found on BTA7 for AFS; BTA12 for NRR; BTA14 and BTA19 for GL; BTA19 for calving ease (CE); BTA5, BTA24, BTA25 and in the X chromosome for SB; BTA23 and in the X chromosome for CZ and in the X chromosome for the number of services (NS). For the cow traits, significant regions were found on BTA29 and in the X chromosome for NRR, BTA11, BTA16 and in the X chromosome for SB, BTA2 for GL, BTA28 for CZ, BTA19 for calving to first insemination, and in the X chromosome for NS and first insemination to conception. The results suggest that the epistatic genetic effects are likely due to many loci with a small effect rather than few loci with a large effect and/or a single SNP marker alone do not capture the epistatic effects well. The genomic architecture of fertility and reproduction traits is complex, and these results should be validated in independent dairy cattle populations and using alternative statistical models.


Assuntos
Epistasia Genética , Estudo de Associação Genômica Ampla , Bovinos/genética , Animais , Feminino , Estudo de Associação Genômica Ampla/veterinária , Fertilidade/genética , Reprodução/genética , Fenótipo , Polimorfismo de Nucleotídeo Único
16.
BMC Genomics ; 23(1): 331, 2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35484513

RESUMO

BACKGROUND: Genetic progress for fertility and reproduction traits in dairy cattle has been limited due to the low heritability of most indicator traits. Moreover, most of the quantitative trait loci (QTL) and candidate genes associated with these traits remain unknown. In this study, we used 5.6 million imputed DNA sequence variants (single nucleotide polymorphisms, SNPs) for genome-wide association studies (GWAS) of 18 fertility and reproduction traits in Holstein cattle. Aiming to identify pleiotropic variants and increase detection power, multiple-trait analyses were performed using a method to efficiently combine the estimated SNP effects of single-trait GWAS based on a chi-square statistic. RESULTS: There were 87, 72, and 84 significant SNPs identified for heifer, cow, and sire traits, respectively, which showed a wide and distinct distribution across the genome, suggesting that they have relatively distinct polygenic nature. The biological functions of immune response and fatty acid metabolism were significantly enriched for the 184 and 124 positional candidate genes identified for heifer and cow traits, respectively. No known biological function was significantly enriched for the 147 positional candidate genes found for sire traits. The most important chromosomes that had three or more significant QTL identified are BTA22 and BTA23 for heifer traits, BTA8 and BTA17 for cow traits, and BTA4, BTA7, BTA17, BTA22, BTA25, and BTA28 for sire traits. Several novel and biologically important positional candidate genes were strongly suggested for heifer (SOD2, WTAP, DLEC1, PFKFB4, TRIM27, HECW1, DNAH17, and ADAM3A), cow (ANXA1, PCSK5, SPESP1, and JMJD1C), and sire (ELMO1, CFAP70, SOX30, DGCR8, SEPTIN14, PAPOLB, JMJD1C, and NELL2) traits. CONCLUSIONS: These findings contribute to better understand the underlying biological mechanisms of fertility and reproduction traits measured in heifers, cows, and sires, which may contribute to improve genomic evaluation for these traits in dairy cattle.


Assuntos
Estudo de Associação Genômica Ampla , MicroRNAs , Animais , Bovinos/genética , Feminino , Fertilidade/genética , Estudo de Associação Genômica Ampla/veterinária , Genótipo , Locos de Características Quantitativas , Proteínas de Ligação a RNA/genética , Reprodução/genética
17.
Genet Sel Evol ; 54(1): 60, 2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36068488

RESUMO

BACKGROUND: Sharing individual phenotype and genotype data between countries is complex and fraught with potential errors, while sharing summary statistics of genome-wide association studies (GWAS) is relatively straightforward, and thus would be especially useful for traits that are expensive or difficult-to-measure, such as feed efficiency. Here we examined: (1) the sharing of individual cow data from international partners; and (2) the use of sequence variants selected from GWAS of international cow data to evaluate the accuracy of genomic estimated breeding values (GEBV) for residual feed intake (RFI) in Australian cows. RESULTS: GEBV for RFI were estimated using genomic best linear unbiased prediction (GBLUP) with 50k or high-density single nucleotide polymorphisms (SNPs), from a training population of 3797 individuals in univariate to trivariate analyses where the three traits were RFI phenotypes calculated using 584 Australian lactating cows (AUSc), 824 growing heifers (AUSh), and 2526 international lactating cows (OVE). Accuracies of GEBV in AUSc were evaluated by either cohort-by-birth-year or fourfold random cross-validations. GEBV of AUSc were also predicted using only the AUS training population with a weighted genomic relationship matrix constructed with SNPs from the 50k array and sequence variants selected from a meta-GWAS that included only international datasets. The genomic heritabilities estimated using the AUSc, OVE and AUSh datasets were moderate, ranging from 0.20 to 0.36. The genetic correlations (rg) of traits between heifers and cows ranged from 0.30 to 0.95 but were associated with large standard errors. The mean accuracies of GEBV in Australian cows were up to 0.32 and almost doubled when either overseas cows, or both overseas cows and AUS heifers were included in the training population. They also increased when selected sequence variants were combined with 50k SNPs, but with a smaller relative increase. CONCLUSIONS: The accuracy of RFI GEBV increased when international data were used or when selected sequence variants were combined with 50k SNP array data. This suggests that if direct sharing of data is not feasible, a meta-analysis of summary GWAS statistics could provide selected SNPs for custom panels to use in genomic selection programs. However, since this finding is based on a small cross-validation study, confirmation through a larger study is recommended.


Assuntos
Bovinos , Lactação , Animais , Austrália , Bovinos/genética , Feminino , Estudo de Associação Genômica Ampla , Genômica , Genótipo , Fenótipo , Polimorfismo de Nucleotídeo Único
18.
J Dairy Sci ; 105(7): 5985-6000, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35534269

RESUMO

Conformation traits are functional traits known to affect longevity, production efficiency, and profitability of dairy goats. However, genetic progress for these traits is expected to be slower than for milk production traits due to the limited number of herds participating in type classification programs, and often lower heritability estimates. Genomic selection substantially accelerates the rate of genetic progress in many species and industries, especially for lowly heritable, difficult, or expensive to measure traits. Therefore, the main objectives of this study were (1) to evaluate the potential benefits of the implementation of single-step genomic evaluations for conformation traits in Canadian Alpine and Saanen dairy goats, and (2) to investigate the effect of the use of single- and multiple-breed training populations. The phenotypes used in this study were linear conformation scores, on a 1-to-9 scale, for 8 traits (i.e., body capacity, dairy character, fore udder, feet and legs, general appearance, rear udder, medial suspensory ligament, and teats) of 5,158 Alpine and 2,342 Saanen does. Genotypes were available for 833 Alpine and 874 Saanen animals. Averaged across all traits, the use of multiple-breed analyses increased validation accuracy for Saanen, and reduced bias of genomically enhanced breeding values (GEBV) for both Alpine and Saanen compared with single-breed analyses. Little benefit was observed from the use of GEBV relative to pedigree-based EBV in terms of validation accuracy and bias, possibly due to limitations in the validation design, but substantial gains of 0.14 to 0.21 (32-50%) were observed in the theoretical accuracy of validation animals when averaged across traits for single- and multiple-breed analyses. Across the whole genotyped population, average gains in theoretical accuracy for GEBV compared with EBV across all traits ranged from 0.15 to 0.17 (32-37%) for Alpine and 0.17 to 0.19 (40-41%) for Saanen, depending on the model used. The largest gains were observed for does without classification records (0.19-0.22 or 50-55%) and bucks without daughter classification records (0.20-0.27 or 57-82%), which have the least information contributing to their traditional EBV. The use of multiple-breed rather than single-breed models was most beneficial for the Saanen breed, which had fewer phenotypic records available for the analyses. These results suggest that the implementation of genomic selection could increase the accuracy of breeding values for conformation traits in Canadian dairy goats.


Assuntos
Cabras , Leite , Animais , Canadá , Genômica/métodos , Genótipo , Cabras/genética , Modelos Genéticos , Fenótipo , Polimorfismo de Nucleotídeo Único
19.
J Dairy Sci ; 105(3): 2393-2407, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34998569

RESUMO

Genomic evaluations are routine in most plant and livestock breeding programs but are used infrequently in dairy goat breeding schemes. In this context, the purpose of this study was to investigate the use of the single-step genomic BLUP method for predicting genomic breeding values for milk production traits (milk, protein, and fat yields; protein and fat percentages) in Canadian Alpine and Saanen dairy goats. There were 6,409 and 12,236 Alpine records and 3,434 and 5,008 Saanen records for each trait in first and later lactations, respectively, and a total of 1,707 genotyped animals (833 Alpine and 874 Saanen). Two validation approaches were used, forward validation (i.e., animals born after 2013 with an average estimated breeding value accuracy from the full data set ≥0.50) and forward cross-validation (i.e., subsets of all animals included in the forward validation were used in successive replications). The forward cross-validation approach resulted in similar validation accuracies (0.55 to 0.66 versus 0.54 to 0.61) and biases (-0.01 to -0.07 versus -0.03 to 0.11) to the forward validation when averaged across traits. Additionally, both single and multiple-breed analyses were compared, and similar average accuracies and biases were observed across traits. However, there was a small gain in accuracy from the use of multiple-breed models for the Saanen breed. A small gain in validation accuracy for genomically enhanced estimated breeding values (GEBV) relative to pedigree-based estimated breeding values (EBV) was observed across traits for the Alpine breed, but not for the Saanen breed, possibly due to limitations in the validation design, heritability of the traits evaluated, and size of the training populations. Trait-specific gains in theoretical accuracy of GEBV relative to EBV for the validation animals ranged from 17 to 31% in Alpine and 35 to 55% in Saanen, using the cross-validation approach. The GEBV predicted from the full data set were 12 to 16% more accurate than EBV for genotyped animals, but no gains were observed for nongenotyped animals. The largest gains were found for does without lactation records (35-41%) and bucks without daughter records (46-54%), and consequently, the implementation of genomic selection in the Canadian dairy goat population would be expected to increase selection accuracy for young breeding candidates. Overall, this study represents the first step toward implementation of genomic selection in Canadian dairy goat populations.


Assuntos
Leite , Polimorfismo de Nucleotídeo Único , Animais , Canadá , Feminino , Genômica/métodos , Genótipo , Cabras/genética , Leite/metabolismo , Modelos Genéticos , Fenótipo
20.
J Dairy Sci ; 105(10): 8189-8198, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35965120

RESUMO

The dairy industry is moving toward selecting animals with better fertility to decrease the economic losses linked to reproductive issues. The reproductive tract size and position score (SPS) was recently developed in physiological studies as an indicator of pregnancy rate and the number of services to conception. Cows are scored as SPS 1, 2, or 3 based on the size of their reproductive tract and its position in the pelvis, as determined by transrectal palpation. The objective of this study was to estimate genetic parameters for SPS to assess its potential as a novel fertility trait. Phenotypes were collected at the University of British Columbia's research herd from 2017 to 2020, consisting of 3,247 within- and across-lactation SPS records from 490 Holstein cows. A univariate animal model was used to estimate the variance components for SPS. Both threshold and linear models were fit under a Bayesian approach and the results were compared using the Spearman rank correlation (r) between the estimated breeding values. The 2 models ranked the animals very similarly (r = 0.99), and the linear model was selected for further analysis. Genetic correlations with other currently evaluated traits were estimated using a bivariate animal model. The posterior means (± posterior standard deviation) for heritability and repeatability within- and across-lactation were 0.113 (± 0.013), 0.242 (± 0.012), and 0.134 (± 0.014), respectively. The SPS showed null correlations with production traits and favorable correlations with traditional fertility traits, varying from -0.730 (nonreturn rate) to 0.931 (number of services). Although preliminary, these results are encouraging because SPS seems to be more heritable than and strongly genetically correlated with number of services, nonreturn rate, and first service to conception, indicating potential for effective indirect selection response on these traits from SPS genetic selection. Therefore, further studies with larger data sets to validate these findings are warranted.


Assuntos
Fertilidade , Reprodução , Animais , Teorema de Bayes , Bovinos/genética , Feminino , Fertilidade/genética , Lactação/genética , Fenótipo , Gravidez , Reprodução/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA