Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(1)2022 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-36613734

RESUMO

As noise-induced hearing loss (NIHL) is a leading cause of occupational diseases, there is an urgent need for the development of preventive and therapeutic interventions. To avoid user-compliance-based problems occurring with conventional protection devices, the pharmacological prevention is currently in the focus of hearing research. Noise exposure leads to an increase in reactive oxygen species (ROS) in the cochlea. This way antioxidant agents are a promising option for pharmacological interventions. Previous animal studies reported preventive as well as therapeutic effects of Insulin-like growth factor 1 (IGF-1) in the context of NIHL. Unfortunately, in patients the time point of the noise trauma cannot always be predicted, and additive effects may occur. Therefore, continuous prevention seems to be beneficial. The present study aimed to investigate the preventive potential of continuous administration of low concentrations of IGF-1 to the inner ear in an animal model of NIHL. Guinea pigs were unilaterally implanted with an osmotic minipump. One week after surgery they received noise trauma, inducing a temporary threshold shift. Continuous IGF-1 delivery lasted for seven more days. It did not lead to significantly improved hearing thresholds compared to control animals. Quite the contrary, there is a hint for a higher noise susceptibility. Nevertheless, changes in the perilymph proteome indicate a reduced damage and better repair mechanisms through the IGF-1 treatment. Thus, future studies should investigate delivery methods enabling continuous prevention but reducing the risk of an overdosage.


Assuntos
Perda Auditiva Provocada por Ruído , Fator de Crescimento Insulin-Like I , Animais , Cobaias , Limiar Auditivo , Cóclea/metabolismo , Audição , Perda Auditiva Provocada por Ruído/prevenção & controle , Perda Auditiva Provocada por Ruído/terapia , Fator de Crescimento Insulin-Like I/uso terapêutico , Perilinfa , Sinapses
2.
J Neurosci ; 40(38): 7190-7202, 2020 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-32938634

RESUMO

Subjective tinnitus is the conscious perception of sound in the absence of any acoustic source. The literature suggests various tinnitus mechanisms, most of which invoke changes in spontaneous firing rates of central auditory neurons resulting from modification of neural gain. Here, we present an alternative model based on evidence that tinnitus is: (1) rare in people who are congenitally deaf, (2) common in people with acquired deafness, and (3) potentially suppressed by active cochlear implants used for hearing restoration. We propose that tinnitus can only develop after fast auditory fiber activity has stimulated the synapse formation between fast-spiking parvalbumin positive (PV+) interneurons and projecting neurons in the ascending auditory path and coactivated frontostriatal networks after hearing onset. Thereafter, fast auditory fiber activity promotes feedforward and feedback inhibition mediated by PV+ interneuron activity in auditory-specific circuits. This inhibitory network enables enhanced stimulus resolution, attention-driven contrast improvement, and augmentation of auditory responses in central auditory pathways (neural gain) after damage of slow auditory fibers. When fast auditory fiber activity is lost, tonic PV+ interneuron activity is diminished, resulting in the prolonged response latencies, sudden hyperexcitability, enhanced cortical synchrony, elevated spontaneous γ oscillations, and impaired attention/stress-control that have been described in previous tinnitus models. Moreover, because fast processing is gained through sensory experience, tinnitus would not exist in congenital deafness. Electrical cochlear stimulation may have the potential to reestablish tonic inhibitory networks and thus suppress tinnitus. The proposed framework unites many ideas of tinnitus pathophysiology and may catalyze cooperative efforts to develop tinnitus therapies.


Assuntos
Vias Auditivas/fisiologia , Implantes Cocleares , Surdez/fisiopatologia , Zumbido/fisiopatologia , Animais , Vias Auditivas/crescimento & desenvolvimento , Vias Auditivas/fisiopatologia , Surdez/terapia , Potenciais Evocados Auditivos , Humanos , Neurogênese
3.
Clin Auton Res ; 31(2): 179-185, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33259005

RESUMO

The forebrain cerebral network including the insular cortex plays a crucial role in the regulation of the central autonomic nervous system in relation to emotional stress. Numerous studies have recently shown that the insular cortex also has roles as a vestibular area in addition to auditory function. In this review, we summarize the recent literature regarding the relationship between the insular cortex and vestibular function, and we describe our hypothesis that the insular cortex has a pivotal role in vestibular-cardiovascular integration.


Assuntos
Sistema Nervoso Autônomo , Córtex Cerebral , Humanos , Prosencéfalo
4.
J Neurosci Res ; 97(11): 1414-1429, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31257632

RESUMO

The use of neurotrophic factors as therapeutic agents for neurodegenerative diseases is considered as an approach aimed at restoring and maintaining neuronal function in the peripheral and central nervous system. Since the neuroprotective effect is depending on chronic delivery of the neurotrophic factors a sustained application, e.g., via cell-based delivery is necessary. Human mesenchymal stem cells (hMSCs) were lentivirally modified to overexpress brain-derived neurotrophic factor (BDNF) and to express fluorescent marker genes for easy visualization. Since genetically modified cells should be site-specifically retained (e.g., by encapsulation) in the patients to avoid adverse effects the cells were additionally differentiated to chondrocytes to hypothetically improve their vitality and survival in a delivery matrix. Different polycations for lentiviral transduction were investigated for their efficiency. The success of differentiation was determined by analysis of chondrocyte marker genes and the neuroprotective effect of BDNF-overexpressing cells was exemplarily investigated on neurons of the peripheral auditory system. The genetically modified hMSCs overexpressed BDNF from under 1 to 125 ng ml-1  day-1 depending on the donor and transfection method. Using protamine sulfate the transfection efficacy was superior compared to the use of polybrene. The BDNF secreted by the MSCs was significantly neuroprotective in comparison to the relevant controls even though the produced mean concentrations were lower than the effective concentrations for recombinant industrially produced proteins described in literature. The presented system of BDNF-overexpressing hMSCs is neuroprotective and is therefore considered as a promising method for sustained delivery of proteins in therapeutically relevant amounts to degenerating neuronal structures.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Condrócitos/metabolismo , Engenharia Genética/métodos , Células-Tronco Mesenquimais/metabolismo , Fármacos Neuroprotetores , Fator Neurotrófico Derivado do Encéfalo/genética , Diferenciação Celular , Expressão Gênica , Vetores Genéticos/genética , Humanos , Lentivirus/genética , Neurônios/metabolismo
5.
J Proteome Res ; 16(5): 1911-1923, 2017 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-28282143

RESUMO

The knowledge about the etiology and pathophysiology of sensorineural hearing loss (SNHL) is still very limited. This study aims at the improvement of understanding different types of SNHL by proteome analysis of human perilymph. Sampling of perilymph was established during inner ear surgeries (cochlear implantation, vestibular schwannoma surgeries), and safety of the sampling method was determined by checking hearing threshold with pure-tone audiometry postoperatively. An in-depth shot-gun proteomics approach was performed to identify cochlear proteins and the individual proteome in perilymph of patients. This method enables the identification and quantification of protein composition of perilymph. The proteome of 41 collected perilymph samples with volumes of 1-12 µL was analyzed by data-dependent acquisition, resulting in overall 878 detected protein groups. At least 203 protein groups were solely identified in perilymph, not in reference samples (serum, cerebrospinal fluid), displaying a specific protein pattern for perilymph. Samples were grouped by patient's age and surgery type, leading to the identification of some proteins specific to particular subgroups. Proteins with different abundances between different sample groups were subjected to classification by gene ontology annotations. The identified proteins might serve as biomarkers to develop tools for noninvasive inner ear diagnostics and to elucidate molecular profiles of SNHL.


Assuntos
Cóclea/química , Perda Auditiva Neurossensorial , Perilinfa/química , Proteoma/análise , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Ontologia Genética , Humanos , Lactente , Pessoa de Meia-Idade , Proteínas/análise , Proteínas/classificação , Proteômica , Estudos de Amostragem
6.
Antioxidants (Basel) ; 13(7)2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-39061830

RESUMO

Cisplatin is an election chemotherapeutic agent used for many cancer treatments. Its cytotoxicity against neoplastic cells is mirrored by that taking place in healthy cells and tissues, resulting in serious adverse events. A very frequent one is ototoxicity, causing hearing loss which may permanently affect quality of life after successful oncologic treatments. Exacerbated oxidative stress is a main cytotoxic mechanism of cisplatin, including ototoxicity. Previous reports have shown antioxidant protection against cisplatin ototoxicity, but there is a lack of comparative studies on the otoprotectant activity and mechanism of antioxidant formulations. Here, we show evidence that a cocktail of vitamins A, C, and E along with Mg++ (ACEMg), previously shown to protect against noise-induced hearing loss, reverses auditory threshold shifts, promotes outer hair cell survival, and attenuates oxidative stress in the cochlea after cisplatin treatment, thus protecting against extreme cisplatin ototoxicity in rats. The addition of 500 mg N-acetylcysteine (NAC), which, administered individually, also shows significant attenuation of cisplatin ototoxicity, to the ACEMg formulation results in functional degradation of ACEMg otoprotection. Mg++ administered alone, as MgSO4, also prevents cisplatin ototoxicity, but in combination with 500 mg NAC, otoprotection is also greatly degraded. Increasing the dose of NAC to 1000 mg also results in dramatic loss of otoprotection activity compared with 500 mg NAC. These findings support that single antioxidants or antioxidant combinations, particularly ACEMg in this experimental series, have significant otoprotection efficacy against cisplatin ototoxicity. However, an excess of combined antioxidants and/or elevated doses, above a yet-to-be-defined "antioxidation threshold", results in unrecoverable redox imbalance with loss of otoprotectant activity.

7.
Bioact Mater ; 40: 366-377, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38978802

RESUMO

With its main features of cartilage degeneration, subchondral bone sclerosis and osteophyte formation, osteoarthritis represents a multifactorial disease with no effective treatment options. As biomechanical shift in the trabecular network may be a driver for further cartilage degeneration, bone enhancement could possibly delay OA progression. Magnesium is known to be osteoconductive and already showed positive effects in OA models. We aimed to use magnesium cylinders to enhance subchondral bone quality, condition of cartilage and pain sensation compared to sole drilling in vivo. After eight weeks of implantation in rabbits, significant increase in subchondral bone volume and trabecular thickness with constant bone mineral density was found indicating favored biomechanics. As representative for pain, a higher number of CD271+ vessels were present in control samples without magnesium. However, this result could not be confirmed by sensitive, objective lameness evaluation using a pressure sensing mat and no positive effect could be shown on either cartilage degeneration evaluated by OARSI score nor the presence of regenerative cells in CD271-stained samples. The presented results show a relevant impact of implanted magnesium on key structures in OA pain with missing clinical relevance regarding pain. Further studies with shifted focus should examine additional structures as joint capsule or osteophytes.

8.
Drug Deliv ; 31(1): 2392755, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39166341

RESUMO

BACKGROUND: There exists an unfulfilled requirement for effective cochlear pharmacotherapy. Controlled local drug delivery could lead to effective bioavailability. The round window niche (RWN), a cavity in the middle ear, is connected to the cochlea via a membrane through which drug can diffuse. We are developing individualized drug-eluting RWN implants (RNIs). To test their effectiveness in guinea pigs, a commonly used model in cochlear pharmacology studies, it is first necessary to develop guinea pig RNIs (GP-RNI). METHODS: Since guinea pigs do not have a RWN such as it is present in humans and to reduce the variables in in vivo studies, a one-size-fits-all GP-RNI model was designed using 12 data sets of Dunkin-Hartley guinea pigs. The model was 3D-printed using silicone. The accuracy and precision of printing, distribution of the sample ingredient dexamethasone (DEX), biocompatibility, bio-efficacy, implantability and drug release were tested in vitro. The GP-RNI efficacy was validated in cochlear implant-traumatized guinea pigs in vivo. RESULTS: The 3D-printed GP-RNI was precise, accurate and fitted in all tested guinea pig RWNs. DEX was homogeneously included in the silicone. The GP-RNI containing 1% DEX was biocompatible, bio-effective and showed a two-phase and sustained DEX release in vitro, while it reduced fibrous tissue growth around the cochlear implant in vivo. CONCLUSIONS: We developed a GP-RNI that can be used for precise inner ear drug delivery in guinea pigs, providing a reliable platform for testing the RNI's safety and efficacy, with potential implications for future clinical translation.


Assuntos
Implantes Cocleares , Dexametasona , Sistemas de Liberação de Medicamentos , Janela da Cóclea , Cobaias , Animais , Janela da Cóclea/efeitos dos fármacos , Janela da Cóclea/metabolismo , Dexametasona/administração & dosagem , Dexametasona/farmacocinética , Dexametasona/farmacologia , Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos , Impressão Tridimensional , Cóclea/efeitos dos fármacos
9.
Head Face Med ; 19(1): 46, 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37891625

RESUMO

Current 3D scanning and printing technologies offer not only state-of-the-art developments in the field of medical imaging and bio-engineering, but also cost and time effective solutions for surgical reconstruction procedures. Besides tissue engineering, where living cells are used, bio-compatible polymers or synthetic resin can be applied. The combination of 3D handheld scanning devices or volumetric imaging, (open-source) image processing packages, and 3D printers form a complete workflow chain that is capable of effective rapid prototyping of outer ear replicas. This paper reviews current possibilities and latest use cases for 3D-scanning, data processing and printing of outer ear replicas with a focus on low-cost solutions for rehabilitation engineering.


Assuntos
Procedimentos de Cirurgia Plástica , Impressão Tridimensional , Humanos , Análise Custo-Benefício , Orelha Externa , Engenharia Tecidual
10.
Front Neurosci ; 17: 1297046, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38161797

RESUMO

Objective: The guinea pig serves as a well-established animal model for inner ear research, offering valuable insights into the anatomy, physiology, and therapeutic interventions of the auditory system. However, the heterogeneity of results observed in both in-vivo experiments and clinical studies poses challenges in understanding and optimizing pharmacotherapy outcomes. This heterogeneity may be due to individual differences in the size of the guinea pig cochlea and thus in the volume of the scala tympani (ST), which can lead to different drug concentrations in the ST, a fact that has been largely overlooked thus far. To address this issue, we aimed to develop an approach for calculating the individual volume of perilymph within the ST before and after cochlear implant insertion. Method: In this study, high-resolution µCT images of a total of n = 42 guinea pig temporal bones were used to determine the volume of the ST. We compared fresh, frozen, and fixed tissues from both colored and albino strains to evaluate the potential influence of tissue condition and strain on the results. Results: Our findings demonstrate a variability in mean ST volume with a relative standard deviation (RSD) of 14.7%, comparable to studies conducted with humans (range RSD: 5 to 20%). This indicates that the guinea pig cochlea exhibits similar variability to that of the human cochlea. Consequently, it is crucial to consider this variability when designing and conducting studies utilizing the guinea pig as an animal model. Furthermore, we successfully developed a tool capable of estimating ST volume without the need for manual segmentation, employing two geometric parameters, basal diameter (A) and width (B) of the cochlea, corresponding to the cochlear footprint. The tool is available for free download and use on our website. Conclusion: This novel approach provides researchers with a valuable tool to calculate individual ST volume in guinea pigs, enabling more precise dosing strategies and optimization of drug concentrations for pharmacotherapy studies. Moreover, our study underscores the importance of acknowledging and accounting for inter-individual variability in animal models to enhance the translational relevance and applicability of research outcomes in the field of inner ear investigations.

11.
Lab Anim ; 57(6): 631-641, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37070340

RESUMO

Auditory disabilities have a large impact on the human population worldwide. Research into understanding and treating hearing disabilities has increased significantly in recent years. One of the most relevant animal species in this context is the guinea pig, which has to be deafened to study several of the hearing pathologies and develop novel therapies. Applying kanamycin subcutaneously and furosemide intravenously is a long-established method in hearing research, leading to permanent hearing loss without surgical intervention at the ear. The intravenous application of furosemide requires invasive surgery in the cervical area of the animals to expose the jugular vein, since a relatively large volume (1 ml per 500 g body weight) must be injected over a period of about 2.5 min. We have established a gentler alternative by applying the furosemide by puncture of the leg veins. For this, custom-made cannula-needle devices were built to allow the vein puncture and subsequent slow injection of the furosemide. This approach was tested in 11 guinea pigs through the foreleg via the cephalic antebrachial vein and through the hind leg via the saphenous vein. Frequency-specific hearing thresholds were measured before and after the procedure to verify normal hearing and successful deafening, respectively. The novel approach of systemic deafening was successfully implemented in 10 out of 11 animals. The Vena saphena was best suited to the application. Since the animals' condition, post leg vein application, was better in comparison to animals deafened by exposure of the Vena jugularis, the postulated refinement that reduced animal stress was deemed successful.


Assuntos
Furosemida , Perda Auditiva Neurossensorial , Humanos , Cobaias , Animais , Furosemida/efeitos adversos , Canamicina/efeitos adversos , Gânglio Espiral da Cóclea/patologia , Células Ciliadas Auditivas/patologia , Perda Auditiva Neurossensorial/induzido quimicamente , Perda Auditiva Neurossensorial/patologia , Audição , Modelos Animais de Doenças
12.
Front Neurosci ; 17: 1224463, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37638326

RESUMO

Neurotrophic factors (NTF) play key roles in the survival of neurons, making them promising candidates for therapy of neurodegenerative diseases. In the case of the inner ear, sensorineural hearing loss (SNHL) is characterized over time by a degeneration of the primary auditory neurons, the spiral ganglion neurons (SGN). It is well known that selected NTF can protect SGN from degeneration, which positively influences the outcome of cochlear implants, the treatment of choice for patients with profound to severe SNHL. However, the outcome of studies investigating protective effects of NTF on auditory neurons are in some cases of high variability. We hypothesize that the factor origin may be one aspect that affects the neuroprotective potential. The aim of this study was to investigate the neuroprotective potential of human and mouse Erythropoietin (EPO) and Cometin on rat SGN. SGN were isolated from neonatal rats (P 2-5) and cultured in serum-free medium. EPO and Cometin of mouse and human origin were added in concentrations of 0.1, 1, and 10 ng/mL and 0.1, 1, and 10 µg/mL, respectively. The SGN survival rate and morphology, and the neurite outgrowth were determined and compared to negative (no additives) and positive (brain-derived neurotrophic factor, BDNF) controls. A neuroprotective effect of 10 µg/mL human Cometin comparable to that obtained with BDNF was observed in the SGN-culture. In contrast, mouse Cometin was ineffective. A similar influence of 10 µg/mL human and mouse and 1 µg/mL human Cometin on the length of regenerated neurites compared to BDNF was also detected. No other Cometin-conditions, and none of the EPO-conditions tested had neuroprotective or neuritogenic effects or influenced the neuronal morphology of the SGN. The neuroprotective effect of 10 µg/mL human Cometin on SGN indicates it is a potentially interesting protein for the supportive treatment of inner ear disorders. The finding that mouse Cometin had no effect on the SGN in the parallel-performed experiments underlines the importance of species origin of molecules being screened for therapeutic purpose.

13.
J Imaging ; 9(2)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36826970

RESUMO

The aim of this study was to develop and validate a semi-automated segmentation approach that identifies the round window niche (RWN) and round window membrane (RWM) for use in the development of patient individualized round window niche implants (RNI) to treat inner ear disorders. Twenty cone beam computed tomography (CBCT) datasets of unilateral temporal bones of patients were included in the study. Defined anatomical landmarks such as the RWM were used to develop a customized 3D Slicer™ plugin for semi-automated segmentation of the RWN. Two otolaryngologists (User 1 and User 2) segmented the datasets manually and semi-automatically using the developed software. Both methods were compared in-silico regarding the resulting RWM area and RWN volume. Finally, the developed software was validated ex-vivo in N = 3 body donor implantation tests with additively manufactured RNI. The independently segmented temporal bones of the different Users showed a strong consistency in the volume of the RWN and the area of the RWM. The volume of the semi-automated RWN segmentations were 48 ± 11% smaller on average than the manual segmentations and the area of the RWM of the semi-automated segmentations was 21 ± 17% smaller on average than the manual segmentation. All additively manufactured implants, based on the semi-automated segmentation method could be implanted successfully in a pressure-tight fit into the RWN. The implants based on the manual segmentations failed to fit into the RWN and this suggests that the larger manual segmentations were over-segmentations. This study presents a semi-automated approach for segmenting the RWN and RWM in temporal bone CBCT scans that is efficient, fast, accurate, and not dependent on trained users. In addition, the manual segmentation, often positioned as the gold-standard, actually failed to pass the implantation validation.

14.
Pharmaceutics ; 15(4)2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37111760

RESUMO

The local treatment of diseases by drug-eluting implants is a promising tool to enable successful therapy under potentially reduced systemic side effects. Especially, the highly flexible manufacturing technique of 3D printing provides the opportunity for the individualization of implant shapes adapted to the patient-specific anatomy. It can be assumed that variations in shape can strongly affect the released amounts of drug per time. This influence was investigated by performing drug release studies with model implants of different dimensions. For this purpose, bilayered model implants in a simplified geometrical shape in form of bilayered hollow cylinders were developed. The drug-loaded abluminal part consisted of a suitable polymer ratio of Eudragit® RS and RL, while the drug-free luminal part composed of polylactic acid served as a diffusion barrier. Implants with different heights and wall thicknesses were produced using an optimized 3D printing process, and drug release was determined in vitro. The area-to-volume ratio was identified as an important parameter influencing the fractional drug release from the implants. Based on the obtained results drug release from 3D printed implants with individual shapes exemplarily adapted to the frontal neo-ostial anatomy of three different patients was predicted and also tested in an independent set of experiments. The similarity of predicted and tested release profiles indicates the predictability of drug release from individualized implants for this particular drug-eluting system and could possibly facilitate the estimation of the performance of customized implants independent of individual in vitro testing of each implant geometry.

15.
Pharmaceutics ; 15(6)2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37376033

RESUMO

A novel approach for the long-term medical treatment of the inner ear is the diffusion of drugs through the round window membrane from a patient-individualized, drug-eluting implant, which is inserted in the middle ear. In this study, drug-loaded (10 wt% Dexamethasone) guinea pig round window niche implants (GP-RNIs, ~1.30 mm × 0.95 mm × 0.60 mm) were manufactured with high precision via micro injection molding (µIM, Tmold = 160 °C, crosslinking time of 120 s). Each implant has a handle (~3.00 mm × 1.00 mm × 0.30 mm) that can be used to hold the implant. A medical-grade silicone elastomer was used as implant material. Molds for µIM were 3D printed from a commercially available resin (TG = 84 °C) via a high-resolution DLP process (xy resolution of 32 µm, z resolution of 10 µm, 3D printing time of about 6 h). Drug release, biocompatibility, and bioefficacy of the GP-RNIs were investigated in vitro. GP-RNIs could be successfully produced. The wear of the molds due to thermal stress was observed. However, the molds are suitable for single use in the µIM process. About 10% of the drug load (8.2 ± 0.6 µg) was released after 6 weeks (medium: isotonic saline). The implants showed high biocompatibility over 28 days (lowest cell viability ~80%). Moreover, we found anti-inflammatory effects over 28 days in a TNF-α-reduction test. These results are promising for the development of long-term drug-releasing implants for human inner ear therapy.

16.
Pharmaceutics ; 15(3)2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36986587

RESUMO

Cochlear implants are well established to treat severe hearing impairments. Despite many different approaches to reduce the formation of connective tissue after electrode insertion and to keep electrical impedances low, results are not yet satisfying. Therefore, the aim of the current study was to combine the incorporation of 5% dexamethasone in the silicone body of the electrode array with an additional polymeric coating releasing diclofenac or the immunophilin inhibitor MM284, some anti-inflammatory substances not yet tested in the inner ear. Guinea pigs were implanted for four weeks and hearing thresholds were determined before implantation and after the observation time. Impedances were monitored over time and, finally, connective tissue and the survival of spiral ganglion neurons (SGNs) were quantified. Impedances increased in all groups to a similar extent but this increase was delayed in the groups with an additional release of diclofenac or MM284. Using Poly-L-lactide (PLLA)-coated electrodes, the damage caused during insertion was much higher than without the coating. Only in these groups, connective tissue could extend to the apex of the cochlea. Despite this, numbers of SGNs were only reduced in PLLA and PLLA plus diclofenac groups. Even though the polymeric coating was not flexible enough, MM284 seems to especially have potential for further evaluation in connection with cochlear implantation.

17.
J Neurophysiol ; 108(4): 1199-210, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22623485

RESUMO

The phenomenal success of the cochlear implant (CI) is attributed to its ability to provide sufficient temporal and spectral cues for speech understanding. Unfortunately, the CI is ineffective for those without a functional auditory nerve or an implantable cochlea required for CI implementation. As an alternative, our group developed and implanted in deaf patients a new auditory midbrain implant (AMI) to stimulate the central nucleus of the inferior colliculus (ICC). Although the AMI can provide frequency cues, it appears to insufficiently transmit temporal cues for speech understanding. The three-dimensional ICC consists of two-dimensional isofrequency laminae. The single-shank AMI only stimulates one site in any given ICC lamina and does not exhibit enhanced activity (i.e., louder percepts or lower thresholds) for repeated pulses on the same site with intervals <2-5 ms, as occurs for CI pulse or acoustic click stimulation. This enhanced activation, related to short-term temporal integration, is important for tracking the rapid temporal fluctuations of a speech signal. Therefore, we investigated the effects of coactivation of different regions within an ICC lamina on primary auditory cortex activity in ketamine-anesthetized guinea pigs. Interestingly, our findings reveal an enhancement mechanism for integrating converging inputs from an ICC lamina on a fast scale (<6-ms window) that is compromised when stimulating just a single ICC location. Coactivation of two ICC regions also reduces the strong and long-term (>100 ms) suppressive effects induced by repeated stimulation of just a single location. Improving AMI performance may require at least two shanks implanted along the tonotopic gradient of the ICC that enables coactivation of multiple regions along an ICC lamina with the appropriate interstimulus delays.


Assuntos
Estimulação Acústica/métodos , Potenciais de Ação/fisiologia , Córtex Auditivo/fisiologia , Colículos Inferiores/fisiologia , Neurônios/fisiologia , Animais , Estimulação Elétrica/métodos , Cobaias , Masculino
18.
Biomolecules ; 12(11)2022 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-36421731

RESUMO

Alzheimer's disease (AD), the most common cause of dementia in the elderly, is a neurodegenerative disorder associated with neurovascular dysfunction, cognitive decline, and the accumulation of amyloid ß peptide (Aß) in the brain and tau-related lesions in neurons termed neurofibrillary tangles (NFTs). Aß deposits and NFT formation are the central pathological hallmarks in AD brains, and the majority of AD cases have been shown to exhibit a complex combination of systemic comorbidities. While AD is the foremost common cause of dementia in the elderly, age-related hearing loss (ARHL) is the most predominant sensory deficit in the elderly. During aging, chronic inflammation and resulting endothelial dysfunction have been described and might be key contributors to AD; we discuss an intriguing possible link between inner ear strial microvascular pathology and blood-brain barrier pathology and present ARHL as a potentially modifiable and treatable risk factor for AD development. We present compelling evidence that ARHL might well be seen as an important risk factor in AD development: progressive hearing impairment, leading to social isolation, and its comorbidities, such as frailty, falls, and late-onset depression, link ARHL with cognitive decline and increased risk of dementia, rendering it tempting to speculate that ARHL might be a potential common molecular and pathological trigger for AD. Additionally, one could speculate that amyloid-beta might damage the blood-labyrinth barrier as it does to the blood-brain barrier, leading to ARHL pathology. Finally, there are options for the treatment of ARHL by targeted neurotrophic factor supplementation to the cochlea to improve cognitive outcomes; they can also prevent AD development and AD-related comorbidity in the future.


Assuntos
Doença de Alzheimer , Humanos , Idoso , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/terapia , Doença de Alzheimer/etiologia , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Barreira Hematoencefálica/metabolismo , Neurônios/metabolismo
19.
Biomolecules ; 12(10)2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-36291636

RESUMO

Noise-induced hearing loss (NIHL) is one of the leading causes of sensorineural hearing loss with global importance. The current treatment of choice for patients with hearing problems is a hearing aid or a cochlear implant. However, there is currently no treatment to restore physiological hearing. The development of preventive drugs is currently the focus of hearing research. In order to test the efficacy of a drug, the active ingredient has to be applied at reliable concentrations over a period of time. Osmotic minipumps can provide local drug delivery into the perilymph. Combined with a cochlear implant or a tube, the implantation of the pumps may lead to increased hearing thresholds. Such surgery-related threshold shifts complicate the examination of other factors, such as noise. The aim of the present study was to develop an animal model for the examination of substances that potentially prevent NIHL. For this purpose, six male guinea pigs were unilaterally implanted with a silicon catheter with a hook-shaped microcannula at its tip, attached to an artificial perilymph containing osmotic minipump. One week after surgery, the animals were exposed to four hours of a musical piece, presented at 120 dB SPL, to induce a threshold shift. The implantation of the hook-delivery device caused a moderate threshold shift that allows to detect an additional noise-induced temporary threshold shift. This method enables to investigate drug effects delivered prior to the noise insult in order to establish a preventive strategy against noise-induced temporary threshold shifts. The established drug delivery approach allows the release of drugs into the inner ear in a known concentration and for a known duration. This provides a scientific tool for basic research on drug effects in normal hearing animals.


Assuntos
Orelha Interna , Perda Auditiva Provocada por Ruído , Cobaias , Masculino , Animais , Perda Auditiva Provocada por Ruído/tratamento farmacológico , Perda Auditiva Provocada por Ruído/prevenção & controle , Cóclea , Silício/farmacologia , Audição , Modelos Animais de Doenças
20.
Biomolecules ; 12(4)2022 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-35454178

RESUMO

Cochlear hair cell damage and spiral ganglion neuron (SGN) degeneration are the main causes of sensory neural hearing loss. Cochlear implants (CIs) can replace the function of the hair cells and stimulate the SGNs electrically. The condition of the SGNs and their spatial distance to the CI are key factors for CI-functionality. For a better performance, a high number of neurons and a closer contact to the electrode are intended. Neurotrophic factors are able to enhance SGN survival and neurite outgrowth, and thereby might optimize the electrode-nerve interaction. This would require chronic factor treatment, which is not yet established for the inner ear. Investigations on chronic drug delivery to SGNs could benefit from an appropriate in vitro model. Thus, an inner ear inspired Neurite Outgrowth Chamber (NOC), which allows the incorporation of a mini-osmotic pump for long-term drug delivery, was designed and three-dimensionally printed. The NOC's function was validated using spiral ganglion explants treated with ciliary neurotrophic factor, neurotrophin-3, or control fluid released via pumps over two weeks. The NOC proved to be suitable for explant cultivation and observation of pump-based drug delivery over the examined period, with neurotrophin-3 significantly increasing neurite outgrowth compared to the other groups.


Assuntos
Técnicas de Cultura de Células , Gânglio Espiral da Cóclea , Fatores de Crescimento Neural/farmacologia , Neurônios , Impressão Tridimensional , Gânglio Espiral da Cóclea/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA