Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 22(12): 1474-1476, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34811543
2.
J Immunol ; 209(3): 621-628, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35831019

RESUMO

We had shown previously that the protein phosphatase 2A regulatory subunit PPP2R2D suppresses IL-2 production, and PPP2R2D deficiency in T cells potentiates the suppressive function of regulatory T (Treg) cells and alleviates imiquimod-induced lupus-like pathology. In this study, in a melanoma xenograft model, we noted that the tumor grew in larger sizes in mice lacking PPP2R2D in T cells (LckCreR2Dfl/fl) compared with wild type (R2Dfl/fl) mice. The numbers of intratumoral T cells in LckCreR2Dfl/fl mice were reduced compared with R2Dfl/fl mice, and they expressed a PD-1+CD3+CD44+ exhaustion phenotype. In vitro experiments confirmed that the chromatin of exhaustion markers PD-1, LAG3, TIM3, and CTLA4 remained open in LckCreR2Dfl/fl CD4 T conventional compared with R2Dfl/fl T conventional cells. Moreover, the percentage of Treg cells (CD3+CD4+Foxp3+CD25hi) was significantly increased in the xenografted tumor of LckCreR2Dfl/fl mice compared with R2Dfl/fl mice probably because of the increase in the percentage of IL-2-producing LckCreR2Dfl/fl T cells. Moreover, using adoptive T cell transfer in mice xenografted with melanoma, we demonstrated that PPP2R2D deficiency in T cells enhanced the inhibitory effect of Treg cells in antitumor immunity. At the translational level, analysis of publicly available data from 418 patients with melanoma revealed that PPP2R2D expression levels correlated positively with tumor-infiltration level of CD4 and CD8 T cells. The data demonstrate that PPP2R2D is a negative regulator of immune checkpoint receptors, and its absence exacerbates effector T cell exhaustion and promotes Treg cell expansion. We conclude that PPP2R2D protects against melanoma growth, and PPP2R2D-promoting regimens can have therapeutic value in patients with melanoma.


Assuntos
Melanoma , Linfócitos T Reguladores , Animais , Proliferação de Células , Humanos , Interleucina-2/metabolismo , Melanoma/metabolismo , Camundongos , Receptor de Morte Celular Programada 1/metabolismo , Proteína Fosfatase 2/metabolismo
3.
Clin Immunol ; 248: 109264, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36804225

RESUMO

Autoimmune manifestations were reported in people infected with SARS-CoV-2. Repetitive exposure of mice to foreign antigen may lead to the onset of autoimmunity. We therefore investigated whether repetitive exposure to the SARS-CoV-2 spike protein could result in autoimmunity. To address this hypothesis, we repeatedly immunized C57Bl/6 mice with spike protein injected intraperitoneally. At the end of the immunization, mice which received spike protein produced anti-spike IgG but none of them developed anti-dsDNA antibodies or proteinuria. In conclusion, repetitive immunization with SARS-CoV-2 spike protein does not induce autoimmunity in the present mice model. Albeit reassuring, these results need to be confirmed by large epidemiological study evaluating the incidence of autoimmune diseases in individuals with repetitive SARS-CoV-2 antigen exposure.


Assuntos
Doenças Autoimunes , COVID-19 , Animais , Humanos , Camundongos , Autoimunidade , Glicoproteína da Espícula de Coronavírus , SARS-CoV-2 , Camundongos Endogâmicos C57BL , Anticorpos Antivirais
4.
Rheumatology (Oxford) ; 62(2): 861-871, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35781320

RESUMO

OBJECTIVE: To investigate the role of calcium/calmodulin-dependent protein kinase IV (CaMK4) in the development of joint injury in a mouse model of arthritis and patients with RA. METHODS: Camk4-deficient, Camk4flox/floxLck-Cre, and mice treated with CaMK4 inhibitor KN-93 or KN-93 encapsulated in nanoparticles tagged with CD4 or CD8 antibodies were subjected to collagen-induced arthritis (CIA). Inflammatory cytokine levels, humoral immune response, synovitis, and T-cell activation were recorded. CAMK4 gene expression was measured in CD4+ T cells from healthy participants and patients with active RA. Micro-CT and histology were used to assess joint pathology. CD4+ and CD14+ cells in patients with RA were subjected to Th17 or osteoclast differentiation, respectively. RESULTS: CaMK4-deficient mice subjected to CIA displayed improved clinical scores and decreased numbers of Th17 cells. KN-93 treatment significantly reduced joint destruction by decreasing the production of inflammatory cytokines. Furthermore, Camk4flox/floxLck-Cre mice and mice treated with KN93-loaded CD4 antibody-tagged nanoparticles developed fewer Th17 cells and less severe arthritis. CaMK4 inhibition mitigated IL-17 production by CD4+ cells in patients with RA. The number of in vitro differentiated osteoclasts from CD14+ cells in patients with RA was significantly decreased with CaMK4 inhibitors. CONCLUSION: Using global and CD4-cell-targeted pharmacologic approaches and conditionally deficient mice, we demonstrate that CaMK4 is important in the development of arthritis. Using ex vivo cell cultures from patients with RA, CaMK4 is important for both Th17 generation and osteoclastogenesis. We propose that CaMK4 inhibition represents a new approach to control the development of arthritis.


Assuntos
Artrite Experimental , Osteogênese , Animais , Camundongos , Proteína Quinase Tipo 4 Dependente de Cálcio-Calmodulina/metabolismo , Cálcio/uso terapêutico , Células Th17 , Citocinas/metabolismo , Artrite Experimental/metabolismo , Diferenciação Celular
5.
Rheumatology (Oxford) ; 60(2): 629-637, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-32533144

RESUMO

OBJECTIVES: The primary objective of this study was to assess the stressful life events preceding the onset of symptoms in RA. The secondary objectives were to assess how early RA patients perceive stress and cope with stressors. METHODS: A case-control study was performed, comparing patients recently diagnosed with RA to age- and gender-matched control subjects recently hospitalized for an unplanned surgical procedure not known to be influenced by stress. The Social Readjustment Rating Scale assessed the cumulative stress induced by stressful life events in the year preceding the onset of symptoms. Coping strategies, stress and anxiety symptoms were evaluated using validated psychological scales. RESULTS: Seventy-six subjects were included in each group. The mean Social Readjustment Rating Scale score was twice as high in cases compared with controls [respectively, 167.0 (172.5) vs 83.3 (124.4), P < 0.001]. The association between cumulative stress and RA was statistically significant only in women, with a dose-dependent association between stress and RA. While female patients with RA attributed more often the onset of symptoms to a life event than female controls (70.2 vs 24.5%, P < 0.001), no significant difference was found when comparing male RA patients with male controls (26.9 vs 18.5%, respectively, P = 0.46). Increased perceived stress score (P = 0.04) and coping based on emotions (P = 0.001) were found in cases compared with controls. CONCLUSION: Patients with early RA reported more life events in the year preceding the onset of symptoms than controls. Gender specificities were found with a significant association between cumulative stress and RA only in women.


Assuntos
Adaptação Psicológica , Artrite Reumatoide/etiologia , Estresse Psicológico/complicações , Adulto , Artrite Reumatoide/epidemiologia , Artrite Reumatoide/psicologia , Estudos de Casos e Controles , Feminino , França/epidemiologia , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Estresse Psicológico/psicologia , Inquéritos e Questionários
8.
Curr Rheumatol Rep ; 19(8): 48, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28718063

RESUMO

PURPOSE OF REVIEW: Current knowledge on the role of platelets and platelet-derived microparticles (PMPs) on the immune system has been fast-growing. Systemic lupus erythematosus (SLE) is a systemic auto-immune disorder characterized by a loss of tolerance toward nuclear auto-antigens. Although recent studies allowed a better understanding of SLE pathogenesis, there is an urgent need for the development of new treatments and the identification of new biomarkers to assess the disease activity. We describe here the state-of-the-art knowledge linking platelets and PMPs to SLE. RECENT FINDINGS: Platelet system activation is a key event in the pathogenesis of SLE. Circulating immune complexes, anti-phospholipid antibodies, and infectious agents such as virus are the main activators of platelets in SLE. Platelet activation can be monitored through different ways such as P-selectin expression, mean platelet volume, or circulating PMP levels, suggesting their potential use as biomarkers. Upon activation, platelets promote type I interferon production, NETosis, dendritic cell activation, and T and B lymphocyte activation, all essential events contributing to the development of SLE. Of interest, platelets also play a fundamental role in SLE organ disease such as the development of cardiovascular, thrombotic, and renal diseases. Finally, we review current knowledge on drugs targeting platelet activation and their potential impact on SLE pathogenesis. Platelets play a major role in SLE pathogenesis and organ disease and represent a great potential for novel biomarkers and drug development.


Assuntos
Autoimunidade/fisiologia , Plaquetas/imunologia , Micropartículas Derivadas de Células/imunologia , Lúpus Eritematoso Sistêmico/sangue , Humanos , Lúpus Eritematoso Sistêmico/imunologia
14.
Joint Bone Spine ; 91(1): 105622, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37495075

RESUMO

Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by immune dysregulation and organ injury with a premature mortality due to cardiovascular diseases. Platelets, that are primarily known for their role in hemostasis, have been shown to play an active role in the pathogenesis and in the progression of immune-mediated inflammatory diseases. Here we summarize the evidence of their roles in SLE pathogenesis which supports the development of targeted treatments. Platelets and their precursors, the megakaryocytes, are intrinsically different in SLE patients compared with healthy controls. Different triggers related to innate and adaptive immunity activate platelets which release extracellular vesicles, soluble factors and interact with immune cells, thereby perpetuating inflammation. Platelets are involved in organ damage in SLE, especially in lupus nephritis and participate in the heightened cardiovascular mortality. They also play a clear role in antiphospholipid syndrome which can be associated with both thrombocytopenia and thrombosis. To tackle platelet activation and their interactions with immune cells now constitute promising therapeutic strategies in SLE.


Assuntos
Síndrome Antifosfolipídica , Lúpus Eritematoso Sistêmico , Humanos , Plaquetas , Ativação Plaquetária , Síndrome Antifosfolipídica/complicações , Inflamação
15.
Cell Rep ; 43(7): 114379, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38889006

RESUMO

The protein phosphatase 2A (PP2A) regulatory subunit PPP2R2A is involved in the regulation of immune response. We report that lupus-prone mice with T cells deficient in PPP2R2A display less autoimmunity and nephritis. PPP2R2A deficiency promotes NAD+ biosynthesis through the nicotinamide riboside (NR)-directed salvage pathway in T cells. NR inhibits murine Th17 and promotes Treg cell differentiation, in vitro, by PΑRylating histone H1.2 and causing its reduced occupancy in the Foxp3 loci and increased occupancy in the Il17a loci, leading to increased Foxp3 and decreased Il17a transcription. NR treatment suppresses disease in MRL.lpr mice and restores NAD+-dependent poly [ADP-ribose] polymerase 1 (PARP1) activity in CD4 T cells from patients with systemic lupus erythematosus (SLE), while reducing interferon (IFN)-γ and interleukin (IL)-17 production. We conclude that PPP2R2A controls the level of NAD+ through the NR-directed salvage pathway and promotes systemic autoimmunity. Translationally, NR suppresses lupus nephritis in mice and limits the production of proinflammatory cytokines by SLE T cells.

16.
Nat Commun ; 15(1): 840, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38287012

RESUMO

Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by dysregulated B cell compartment responsible for the production of autoantibodies. Here, we show that T cell-specific expression of calcium/calmodulin-dependent protein kinase IV (CaMK4) leads to T follicular helper (Tfh) cells expansion in models of T-dependent immunization and autoimmunity. Mechanistically, CaMK4 controls the Tfh-specific transcription factor B cell lymphoma 6 (Bcl6) at the transcriptional level through the cAMP responsive element modulator α (CREMα). In the absence of CaMK4 in T cells, germinal center formation and humoral immunity is impaired in immunized mice, resulting in reduced anti-dsDNA titres, as well as IgG and complement kidney deposition in the lupus-prone B6.lpr mouse. In human Tfh cells, CaMK4 inhibition reduced BCL6 expression and IL-21 secretion ex vivo, resulting in impaired plasmablast formation and IgG production. In patients with SLE, CAMK4 mRNA levels in Tfh cells correlated with those of BCL6. In conclusion, we identify CaMK4/CREMα as a driver of T cell-dependent B cell dysregulation in autoimmunity.


Assuntos
Lúpus Eritematoso Sistêmico , Células T Auxiliares Foliculares , Animais , Humanos , Camundongos , Autoimunidade , Diferenciação Celular/genética , Imunoglobulina G/metabolismo , Células T Auxiliares Foliculares/metabolismo , Linfócitos T Auxiliares-Indutores
17.
Cell Metab ; 35(5): 728-729, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37137285

RESUMO

Immune cell microenvironment plays a major role in the aberrant function of immune cells in systemic lupus erythematosus. Zeng and co-authors show that in human and murine lupus, splenic stromal cell-derived acetylcholine switches B cell metabolism to fatty acid oxidation and promotes B cell autoreactivity and disease development.


Assuntos
Autoimunidade , Lúpus Eritematoso Sistêmico , Camundongos , Humanos , Animais , Lúpus Eritematoso Sistêmico/metabolismo , Linfócitos B/metabolismo , Neurotransmissores/metabolismo
18.
Joint Bone Spine ; 91(3): 105645, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37769800

RESUMO

Mind-body practices are complementary approaches recognized by the World Health Organization (WHO). While these practices are very diverse, they all focus on the interaction between mind and body. These include mindful meditation, yoga, Tai Chi, sophrology, hypnosis and various relaxation techniques. There is growing interest in incorporating these strategies in the management of chronic rheumatic diseases including rheumatoid arthritis. The aim of this review is to describe the main mind-body practices and analyze the existing evidence in chronic rheumatic diseases. In rheumatoid arthritis, the Mindfulness-Based Stress Reduction program, yoga, Tai Chi and relaxation may improve patient-reported outcomes, but the benefit on inflammation and structural progression is unclear. In spondyloarthritis, very few studies are available but similar evidence exist. Further evaluations of these practices in chronic rheumatic diseases are needed since their risk/benefit ratio appears excellent.

19.
Joint Bone Spine ; 90(2): 105523, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36623799

RESUMO

INTRODUCTION: Despite available therapies, persistently active and corticosteroid-dependent Systemic Lupus Erythematosus (SLE) represent a significant therapeutic challenge. The purpose of this systematic review was to provide an updated view of targeted therapies currently in clinical development in SLE, with a special focus on the most promising ones. METHODS: We performed a systematic review of targeted therapies in clinical development in SLE in clinicaltrials.gov (search date: 28th of August 2022). Targeted therapies (defined as drugs specifically designed to block certain molecules, receptors, or pathways involved in the development of SLE) were extracted. For each investigational drug, we considered only the study at the most advanced stage of clinical development. RESULTS: The systematic review yielded a total of 92 targeted therapies (58 biological DMARDs [bDMARDs] and 34 targeted synthetic [ts]DMARDs) assessed in a total of 203 clinical trials. The candidate drugs reached phase I (n=20), Ia/IIb (n=6), phase II (n=51), phase II/III (n=1), phase III (n=13) and phase IV (n=1). These trials were reported as recruiting (n=31), active but not recruiting (n=8), not yet recruiting (n=4), enrolling by invitation (n=2), completed (n=31), prematurely terminated (n=12) and withdrawn in 1 (status unknown in 3). The main investigational drugs for SLE target inflammatory cytokines, chemokines or their receptors (n=19), intracellular signaling pathways (n=18), B cells (n=14) or plasma cells (n=7),T/B cells co-stimulation molecules (n=10), complement molecules (n=5),T lymphocytes (n=2), plasmacytoid dendritic cells (n=2), as well as various other immune targets (n=15). CONCLUSION: The pipeline of investigational drugs in SLE is highly diversified and will hopefully enable more optimal Treat-To-Target with the goal of disease modification. Companion biomarkers will be needed to better characterized SLE heterogeneity and optimize treatment selection at the individual-patient level.


Assuntos
Antirreumáticos , Produtos Biológicos , Lúpus Eritematoso Sistêmico , Humanos , Anticorpos Monoclonais/uso terapêutico , Drogas em Investigação/uso terapêutico , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Antirreumáticos/uso terapêutico , Produtos Biológicos/uso terapêutico
20.
Drug Discov Today ; 28(7): 103612, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37164306

RESUMO

Drugs of unknown mechanisms of action are no longer being developed because we have largely capitalized on our improved understanding of the immunopathogenesis of immune-mediated inflammatory diseases (IMIDs) to develop therapeutic monoclonal antibodies (mAbs) and targeted treatments. These therapies have profoundly revolutionized the care of IMIDs. However, because of the heterogeneity of IMIDs and the redundancy of the targeted molecular pathways, some patients with IMIDs might not respond to a specific targeted drug or their disease might relapse secondarily. Therefore, there is much at stake in the development of new therapeutic strategies, which include combinations of mAbs or bispecific mAbs (BsMAbs), nanobodies and nanoparticles (NPs), therapeutic vaccines, small interfering RNA (siRNA) interference, autologous hematopoietic stem cell transplantation (aHSCT), or chimeric antigen receptor (CAR)-T cells. With the broad pipeline of targeted treatments in clinical development, the therapeutic paradigm is rapidly evolving from whether new drugs will be available to the complex selection of the most adequate targeted treatment (or treatment combination) at the patient level. This paradigm change highlights the need to better characterize the heterogeneous immunological spectrum of these diseases. Only then will these novel therapeutic strategies be able to fully demonstrate their potential to treat IMIDs.


Assuntos
Doenças Autoimunes , Doenças Reumáticas , Humanos , Agentes de Imunomodulação , Anticorpos Monoclonais/uso terapêutico , Imunoterapia , Doenças Reumáticas/tratamento farmacológico , Doenças Autoimunes/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA