Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 163
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
EMBO J ; 43(16): 3358-3387, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38977849

RESUMO

Tetanus neurotoxin (TeNT) causes spastic paralysis by inhibiting neurotransmission in spinal inhibitory interneurons. TeNT binds to the neuromuscular junction, leading to its internalisation into motor neurons and subsequent transcytosis into interneurons. While the extracellular matrix proteins nidogens are essential for TeNT binding, the molecular composition of its receptor complex remains unclear. Here, we show that the receptor-type protein tyrosine phosphatases LAR and PTPRδ interact with the nidogen-TeNT complex, enabling its neuronal uptake. Binding of LAR and PTPRδ to the toxin complex is mediated by their immunoglobulin and fibronectin III domains, which we harnessed to inhibit TeNT entry into motor neurons and protect mice from TeNT-induced paralysis. This function of LAR is independent of its role in regulating TrkB receptor activity, which augments axonal transport of TeNT. These findings reveal a multi-subunit receptor complex for TeNT and demonstrate a novel trafficking route for extracellular matrix proteins. Our study offers potential new avenues for developing therapeutics to prevent tetanus and dissecting the mechanisms controlling the targeting of physiological ligands to long-distance axonal transport in the nervous system.


Assuntos
Glicoproteínas de Membrana , Neurônios Motores , Toxina Tetânica , Animais , Camundongos , Toxina Tetânica/metabolismo , Neurônios Motores/metabolismo , Glicoproteínas de Membrana/metabolismo , Humanos , Moléculas de Adesão Celular/metabolismo , Ligação Proteica , Receptor trkB/metabolismo , Transporte Axonal , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores
2.
Nature ; 603(7899): 131-137, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35197628

RESUMO

Variants of UNC13A, a critical gene for synapse function, increase the risk of amyotrophic lateral sclerosis and frontotemporal dementia1-3, two related neurodegenerative diseases defined by mislocalization of the RNA-binding protein TDP-434,5. Here we show that TDP-43 depletion induces robust inclusion of a cryptic exon in UNC13A, resulting in nonsense-mediated decay and loss of UNC13A protein. Two common intronic UNC13A polymorphisms strongly associated with amyotrophic lateral sclerosis and frontotemporal dementia risk overlap with TDP-43 binding sites. These polymorphisms potentiate cryptic exon inclusion, both in cultured cells and in brains and spinal cords from patients with these conditions. Our findings, which demonstrate a genetic link between loss of nuclear TDP-43 function and disease, reveal the mechanism by which UNC13A variants exacerbate the effects of decreased TDP-43 function. They further provide a promising therapeutic target for TDP-43 proteinopathies.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Proteinopatias TDP-43 , Processamento Alternativo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Códon sem Sentido , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Humanos , Proteínas do Tecido Nervoso , Polimorfismo de Nucleotídeo Único/genética
3.
Mol Cell ; 74(2): 347-362.e6, 2019 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-30853401

RESUMO

Selective autophagy recycles damaged organelles and clears intracellular pathogens to prevent their aberrant accumulation. How ULK1 kinase is targeted and activated during selective autophagic events remains to be elucidated. In this study, we used chemically inducible dimerization (CID) assays in tandem with CRISPR KO lines to systematically analyze the molecular basis of selective autophagosome biogenesis. We demonstrate that ectopic placement of NDP52 on mitochondria or peroxisomes is sufficient to initiate selective autophagy by focally localizing and activating the ULK1 complex. The capability of NDP52 to induce mitophagy is dependent on its interaction with the FIP200/ULK1 complex, which is facilitated by TBK1. Ectopically tethering ULK1 to cargo bypasses the requirement for autophagy receptors and TBK1. Focal activation of ULK1 occurs independently of AMPK and mTOR. Our findings provide a parsimonious model of selective autophagy, which highlights the coordination of ULK1 complex localization by autophagy receptors and TBK1 as principal drivers of targeted autophagosome biogenesis.


Assuntos
Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Autofagia/genética , Proteínas Nucleares/genética , Proteínas Serina-Treonina Quinases/genética , Quinases Proteína-Quinases Ativadas por AMP , Proteínas Relacionadas à Autofagia , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Células HeLa , Humanos , Mitocôndrias/química , Mitocôndrias/genética , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Peroxissomos/química , Peroxissomos/genética , Fosforilação , Proteínas Quinases/genética , Multimerização Proteica , Proteínas Tirosina Quinases/química , Proteínas Tirosina Quinases/genética , Transdução de Sinais/genética , Serina-Treonina Quinases TOR/genética
4.
Am J Pathol ; 194(9): 1752-1763, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38885925

RESUMO

Local tetanus develops when limited amounts of tetanus neurotoxin (TeNT) are released by Clostridium tetani generated from spores inside a necrotic wound. Within days, a spastic paralysis restricted to the muscles of the affected anatomical area develops. This paralysis follows the retrograde transport of TeNT inside the axons of motoneurons and its uptake by inhibitory interneurons with cleavage of a vesicle-associated membrane protein required for neurotransmitter release. Consequently, incontrollable excitation of motoneurons causes contractures of innervated muscles and leads to local spastic paralysis. Here, the initial events occurring close to the site of TeNT release were investigated in a mouse model of local tetanus. A peripheral flaccid paralysis was found to occur, before or concurrent to the spastic paralysis. At variance from the confined TeNT proteolytic activity taking place within motor neuron terminals, central protein cleavage was detected within inhibitory interneurons controlling motor neuron efferents innervating muscle groups distant from the site of TeNT release. These results indicate peripheral activity of TeNT in tetanus and explains why the spastic paralysis observed in local tetanus, although confined to single limbs, generally affects multiple muscles. The initial TeNT neuroparalytic activity can be detected by measuring the compound muscle action potential, providing a very early diagnosis and therapy, thus preventing the ensuing life-threatening generalized tetanus.


Assuntos
Junção Neuromuscular , Paralisia , Toxina Tetânica , Tétano , Animais , Tétano/metabolismo , Tétano/complicações , Toxina Tetânica/metabolismo , Camundongos , Junção Neuromuscular/metabolismo , Junção Neuromuscular/patologia , Junção Neuromuscular/efeitos dos fármacos , Paralisia/metabolismo , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Interneurônios/metabolismo , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Feminino
6.
Neurobiol Dis ; 195: 106501, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38583640

RESUMO

Charcot-Marie-Tooth disease (CMT) is a genetic peripheral neuropathy caused by mutations in many functionally diverse genes. The aminoacyl-tRNA synthetase (ARS) enzymes, which transfer amino acids to partner tRNAs for protein synthesis, represent the largest protein family genetically linked to CMT aetiology, suggesting pathomechanistic commonalities. Dominant intermediate CMT type C (DI-CMTC) is caused by YARS1 mutations driving a toxic gain-of-function in the encoded tyrosyl-tRNA synthetase (TyrRS), which is mediated by exposure of consensus neomorphic surfaces through conformational changes of the mutant protein. In this study, we first showed that human DI-CMTC-causing TyrRSE196K mis-interacts with the extracellular domain of the BDNF receptor TrkB, an aberrant association we have previously characterised for several mutant glycyl-tRNA synthetases linked to CMT type 2D (CMT2D). We then performed temporal neuromuscular assessments of YarsE196K mice modelling DI-CMT. We determined that YarsE196K homozygotes display a selective, age-dependent impairment in in vivo axonal transport of neurotrophin-containing signalling endosomes, phenocopying CMT2D mice. This impairment is replicated by injection of recombinant TyrRSE196K, but not TyrRSWT, into muscles of wild-type mice. Augmenting BDNF in DI-CMTC muscles, through injection of recombinant protein or muscle-specific gene therapy, resulted in complete axonal transport correction. Therefore, this work identifies a non-cell autonomous pathomechanism common to ARS-related neuropathies, and highlights the potential of boosting BDNF levels in muscles as a therapeutic strategy.


Assuntos
Transporte Axonal , Fator Neurotrófico Derivado do Encéfalo , Doença de Charcot-Marie-Tooth , Modelos Animais de Doenças , Animais , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Camundongos , Tirosina-tRNA Ligase/genética , Tirosina-tRNA Ligase/metabolismo , Humanos , Camundongos Transgênicos , Músculo Esquelético/metabolismo , Receptor trkB/metabolismo , Receptor trkB/genética , Mutação
7.
Int J Mol Sci ; 24(10)2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37240244

RESUMO

Hearing loss and peripheral neuropathy are two clinical entities that are genetically and phenotypically heterogeneous and sometimes co-occurring. Using exome sequencing and targeted segregation analysis, we investigated the genetic etiology of peripheral neuropathy and hearing loss in a large Ashkenazi Jewish family. Moreover, we assessed the production of the candidate protein via western blotting of lysates from fibroblasts from an affected individual and an unaffected control. Pathogenic variants in known disease genes associated with hearing loss and peripheral neuropathy were excluded. A homozygous frameshift variant in the BICD1 gene, c.1683dup (p.(Arg562Thrfs*18)), was identified in the proband and segregated with hearing loss and peripheral neuropathy in the family. The BIDC1 RNA analysis from patient fibroblasts showed a modest reduction in gene transcripts compared to the controls. In contrast, protein could not be detected in fibroblasts from a homozygous c.1683dup individual, whereas BICD1 was detected in an unaffected individual. Our findings indicate that bi-allelic loss-of-function variants in BICD1 are associated with hearing loss and peripheral neuropathy. Definitive evidence that bi-allelic loss-of-function variants in BICD1 cause peripheral neuropathy and hearing loss will require the identification of other families and individuals with similar variants with the same phenotype.


Assuntos
Surdez , Perda Auditiva , Doenças do Sistema Nervoso Periférico , Humanos , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas do Citoesqueleto/genética , Surdez/genética , Perda Auditiva/genética , Linhagem , Doenças do Sistema Nervoso Periférico/genética , Fenótipo
8.
Traffic ; 21(1): 13-33, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31670447

RESUMO

Neurons are highly polarized cells that critically depend on long-range, bidirectional transport between the cell body and synapse for their function. This continual and highly coordinated trafficking process, which takes place via the axon, has fascinated researchers since the early 20th century. Ramon y Cajal first proposed the existence of axonal trafficking of biological material after observing that dissociation of the axon from the cell body led to neuronal degeneration. Since these first indirect observations, the field has come a long way in its understanding of this fundamental process. However, these advances in our knowledge have been aided by breakthroughs in other scientific disciplines, as well as the parallel development of novel tools, techniques and model systems. In this review, we summarize the evolution of tools used to study axonal transport and discuss how their deployment has refined our understanding of this process. We also highlight innovative tools currently being developed and how their addition to the available axonal transport toolkit might help to address key outstanding questions.


Assuntos
Transporte Axonal , Cinesinas , Animais , Axônios/metabolismo , Humanos , Cinesinas/metabolismo , Modelos Biológicos , Neurônios/metabolismo
9.
J Cell Sci ; 133(6)2020 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-32079660

RESUMO

Signalling by target-derived neurotrophins is essential for the correct development of the nervous system and its maintenance throughout life. Several aspects concerning the lifecycle of neurotrophins and their receptors have been characterised over the years, including the formation, endocytosis and trafficking of signalling-competent ligand-receptor complexes. However, the molecular mechanisms directing the sorting of activated neurotrophin receptors are still elusive. Previously, our laboratory identified Bicaudal-D1 (BICD1), a dynein motor adaptor, as a key factor for lysosomal degradation of brain-derived neurotrophic factor (BDNF)-activated TrkB (also known as NTRK2) and p75NTR (also known as NGFR) in motor neurons. Here, using a proteomics approach, we identified protein tyrosine phosphatase, non-receptor type 23 (PTPN23), a member of the endosomal sorting complexes required for transport (ESCRT) machinery, in the BICD1 interactome. Molecular mapping revealed that PTPN23 is not a canonical BICD1 cargo; instead, PTPN23 binds the N-terminus of BICD1, which is also essential for the recruitment of cytoplasmic dynein. In line with the BICD1-knockdown phenotype, loss of PTPN23 leads to increased accumulation of BDNF-activated p75NTR and TrkB in swollen vacuole-like compartments, suggesting that neuronal PTPN23 is a novel regulator of the endocytic sorting of neurotrophin receptors.


Assuntos
Dineínas , Monoéster Fosfórico Hidrolases , Proteínas Tirosina Fosfatases não Receptoras , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Dineínas/genética , Camundongos , Transporte Proteico , Receptor trkB/genética , Receptor trkB/metabolismo , Receptores de Fator de Crescimento Neural/genética , Receptores de Fator de Crescimento Neural/metabolismo
10.
Biochem Biophys Res Commun ; 626: 72-78, 2022 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-35973377

RESUMO

Poliovirus (PV) can spread through neural pathway to the central nervous system and replicates in motor neurons, which leads to poliomyelitis. Enterovirus 71 (EV71), which is closely related to PV, is one of the causative agents of hand-foot-and-mouth disease and can cause severe neurological diseases similar to poliomyelitis. Since PV is similar to EV71 in its motor neurotoxicity, we tried to understand if the results obtained with PV are of general applicability to EV71 and other viruses with similar characteristics. Using microfluidic devices, we demonstrated that both PV capsid and the PV genome undergo axonal retrograde transport with human PV receptor (hPVR), and the transported virus replicated in the soma of hPVR-expressing motor neurons. Similar to PV in hPVR-transgenic (Tg) mice, neural pathway ensuring spreading of EV71 has been shown in adult human scavenger receptor class B, member 2 (hSCARB2)-Tg mice. We have validated this finding in microfluidic devices by showing that EV71 is retrogradely transported together with hSCARB2 to the cell body where it replicates in an hSCARB2-dependent manner.


Assuntos
Enterovirus Humano A , Enterovirus , Poliomielite , Poliovirus , Animais , Transporte Axonal/fisiologia , Enterovirus Humano A/fisiologia , Humanos , Camundongos , Camundongos Transgênicos , Neurônios Motores , Poliovirus/metabolismo
11.
J Pharmacol Exp Ther ; 383(2): 117-128, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36116796

RESUMO

Using synaptosomes purified from the brains of two transgenic mouse models overexpressing mutated human tau (TgP301S and Tg4510) and brains of patients with sporadic Alzheimer's disease, we showed that aggregated and hyperphosphorylated tau was both present in purified synaptosomes and released in a calcium- and synaptosome-associated protein of 25 kDa (SNAP25)-dependent manner. In all mouse and human synaptosomal preparations, tau release was inhibited by the selective metabotropic glutamate receptor 2/3 (mGluR2/3) agonist LY379268, an effect prevented by the selective mGlu2/3 antagonist LY341495. LY379268 was also able to block pathologic tau propagation between primary neurons in an in vitro microfluidic cellular model. These novel results are transformational for our understanding of the molecular mechanisms mediating tau release and propagation at synaptic terminals in Alzheimer's disease and suggest that these processes could be inhibited therapeutically by the selective activation of presynaptic G protein-coupled receptors. SIGNIFICANCE STATEMENT: Pathological tau release and propagation are key neuropathological events underlying cognitive decline in Alzheimer's disease patients. This paper describes the role of regulated exocytosis, and the soluble N-ethylmaleimide-sensitive factor attachment receptor (SNARE) protein SNAP25, in mediating tau release from rodent and human synaptosomes. This paper also shows that a selective mGluR2/3 agonist is highly effective in blocking tau release from synaptosomes and tau propagation between neurons, opening the way to the discovery of novel therapeutic approaches to this devastating disease.


Assuntos
Doença de Alzheimer , Receptores de Glutamato Metabotrópico , Proteínas tau/metabolismo , Doença de Alzheimer/tratamento farmacológico , Animais , Cálcio/metabolismo , Exocitose , Humanos , Camundongos , Proteínas Sensíveis a N-Etilmaleimida/metabolismo , Proteínas Sensíveis a N-Etilmaleimida/farmacologia , Receptores de Glutamato Metabotrópico/metabolismo , Proteínas SNARE/metabolismo , Proteínas SNARE/farmacologia , Sinaptossomos/metabolismo
12.
J Anat ; 241(5): 1108-1119, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-34121181

RESUMO

Analysis of rodent muscles affords an opportunity to glean key insights into neuromuscular development and the detrimental impact of disease-causing genetic mutations. Muscles of the distal leg, for instance the gastrocnemius and tibialis anterior, are commonly used in such studies with mice and rats. However, thin and flat muscles, which can be dissected, processed and imaged without major disruption to muscle fibres and nerve-muscle contacts, are more suitable for accurate and detailed analyses of the peripheral motor nervous system. One such wholemount muscle is the predominantly fast twitch epitrochleoanconeus (ETA), which is located in the upper forelimb, innervated by the radial nerve, and contains relatively large and uniformly flat neuromuscular junctions (NMJs). To facilitate incorporation of the ETA into the experimental toolkit of the neuromuscular disease field, here, we describe a simple method for its rapid isolation (<5 min), supported by high-resolution videos and step-by-step images. Furthermore, we outline how the ETA can be imaged in live, anaesthetised mice, to enable examination of dynamic cellular processes occurring at the NMJ and within intramuscular axons, including transport of organelles, such as mitochondria and signalling endosomes. Finally, we present reference data on wild-type ETA fibre-type composition in young adult, male C57BL6/J mice. Comparative neuroanatomical studies of different muscles in rodent models of disease can generate critical insights into pathogenesis and pathology; dissection of the wholemount ETA provides the possibility to diversify the repertoire of muscles analysed for this endeavour.


Assuntos
Músculo Esquelético , Junção Neuromuscular , Animais , Axônios , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Junção Neuromuscular/metabolismo , Ratos
13.
Mol Psychiatry ; 26(11): 6411-6426, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34002021

RESUMO

Several psychiatric, neurologic and neurodegenerative disorders present increased brain ventricles volume, being hydrocephalus the disease with the major manifestation of ventriculomegaly caused by the accumulation of high amounts of cerebrospinal fluid (CSF). The molecules and pathomechanisms underlying cerebral ventricular enlargement are widely unknown. Kinase D interacting substrate of 220 kDa (KIDINS220) gene has been recently associated with schizophrenia and with a novel syndrome characterized by spastic paraplegia, intellectual disability, nystagmus and obesity (SINO syndrome), diseases frequently occurring with ventriculomegaly. Here we show that Kidins220, a transmembrane protein effector of various key neuronal signalling pathways, is a critical regulator of CSF homeostasis. We observe that both KIDINS220 and the water channel aquaporin-4 (AQP4) are markedly downregulated at the ventricular ependymal lining of idiopathic normal pressure hydrocephalus (iNPH) patients. We also find that Kidins220 deficient mice develop ventriculomegaly accompanied by water dyshomeostasis and loss of AQP4 in the brain ventricular ependymal layer and astrocytes. Kidins220 is a known cargo of the SNX27-retromer, a complex that redirects endocytosed plasma membrane proteins (cargos) back to the cell surface, thus avoiding their targeting to lysosomes for degradation. Mechanistically, we show that AQP4 is a novel cargo of the SNX27-retromer and that Kidins220 deficiency promotes a striking and unexpected downregulation of the SNX27-retromer that results in AQP4 lysosomal degradation. Accordingly, SNX27 silencing decreases AQP4 levels in wild-type astrocytes whereas SNX27 overexpression restores AQP4 content in Kidins220 deficient astrocytes. Together our data suggest that the KIDINS220-SNX27-retromer-AQP4 pathway is involved in human ventriculomegaly and open novel therapeutic perspectives.


Assuntos
Hidrocefalia , Animais , Aquaporina 4/genética , Aquaporina 4/metabolismo , Epêndima/metabolismo , Humanos , Hidrocefalia/genética , Hidrocefalia/metabolismo , Lisossomos/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Nexinas de Classificação/genética
14.
EMBO Rep ; 21(3): e49129, 2020 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-32030864

RESUMO

Signalling endosomes are essential for trafficking of activated ligand-receptor complexes and their distal signalling, ultimately leading to neuronal survival. Although deficits in signalling endosome transport have been linked to neurodegeneration, our understanding of the mechanisms controlling this process remains incomplete. Here, we describe a new modulator of signalling endosome trafficking, the insulin-like growth factor 1 receptor (IGF1R). We show that IGF1R inhibition increases the velocity of signalling endosomes in motor neuron axons, both in vitro and in vivo. This effect is specific, since IGF1R inhibition does not alter the axonal transport of mitochondria or lysosomes. Our results suggest that this change in trafficking is linked to the dynein adaptor bicaudal D1 (BICD1), as IGF1R inhibition results in an increase in the de novo synthesis of BICD1 in the axon of motor neurons. Finally, we found that IGF1R inhibition can improve the deficits in signalling endosome transport observed in a mouse model of amyotrophic lateral sclerosis (ALS). Taken together, these findings suggest that IGF1R inhibition may be a new therapeutic target for ALS.


Assuntos
Transporte Axonal , Endossomos , Animais , Axônios/metabolismo , Endossomos/metabolismo , Camundongos , Neurônios Motores , Transdução de Sinais
15.
Cell Mol Life Sci ; 78(6): 2665-2681, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33341920

RESUMO

Messenger RNA (mRNA) localisation enables a high degree of spatiotemporal control on protein synthesis, which contributes to establishing the asymmetric protein distribution required to set up and maintain cellular polarity. As such, a tight control of mRNA localisation is essential for many biological processes during development and in adulthood, such as body axes determination in Drosophila melanogaster and synaptic plasticity in neurons. The mechanisms controlling how mRNAs are localised, including diffusion and entrapment, local degradation and directed active transport, are largely conserved across evolution and have been under investigation for decades in different biological models. In this review, we will discuss the standing of the field regarding directional mRNA transport in light of the recent discovery that RNA can hitchhike on cytoplasmic organelles, such as endolysosomes, and the impact of these transport modalities on our understanding of neuronal function during development, adulthood and in neurodegeneration.


Assuntos
Neurônios/metabolismo , RNA Mensageiro/metabolismo , Animais , Axônios/metabolismo , Drosophila/genética , Drosophila/crescimento & desenvolvimento , Drosophila/metabolismo , Humanos , Proteínas Motores Moleculares/metabolismo , Neurônios/citologia , Oócitos/metabolismo , Transporte de RNA , Saccharomycetales/genética , Saccharomycetales/metabolismo
16.
Nucleic Acids Res ; 48(12): 6889-6905, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32479602

RESUMO

Mutations in the RNA-binding protein FUS cause amyotrophic lateral sclerosis (ALS), a devastating neurodegenerative disease. FUS plays a role in numerous aspects of RNA metabolism, including mRNA splicing. However, the impact of ALS-causative mutations on splicing has not been fully characterized, as most disease models have been based on overexpressing mutant FUS, which will alter RNA processing due to FUS autoregulation. We and others have recently created knockin models that overcome the overexpression problem, and have generated high depth RNA-sequencing on FUS mutants in parallel to FUS knockout, allowing us to compare mutation-induced changes to genuine loss of function. We find that FUS-ALS mutations induce a widespread loss of function on expression and splicing. Specifically, we find that mutant FUS directly alters intron retention levels in RNA-binding proteins. Moreover, we identify an intron retention event in FUS itself that is associated with its autoregulation. Altered FUS levels have been linked to disease, and we show here that this novel autoregulation mechanism is altered by FUS mutations. Crucially, we also observe this phenomenon in other genetic forms of ALS, including those caused by TDP-43, VCP and SOD1 mutations, supporting the concept that multiple ALS genes interact in a regulatory network.


Assuntos
Esclerose Lateral Amiotrófica/genética , Homeostase/genética , Proteína FUS de Ligação a RNA/genética , Animais , Citoplasma/genética , Proteínas de Ligação a DNA/genética , Modelos Animais de Doenças , Regulação da Expressão Gênica/genética , Humanos , Íntrons/genética , Mutação com Perda de Função , Camundongos , Camundongos Knockout , Mutação/genética , Splicing de RNA/genética , Superóxido Dismutase-1/genética , Proteína com Valosina/genética
17.
J Neurochem ; 156(5): 563-588, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32770783

RESUMO

Since aggregates of the microtubule-binding protein tau were found to be the main component of neurofibrillary tangles more than 30 years ago, their contribution to neurodegeneration in Alzheimer's disease (AD) and tauopathies has become well established. Recent work shows that both tau load and its distribution in the brain of AD patients correlate with cognitive decline more closely compared to amyloid plaque deposition. In addition, the amyloid cascade hypothesis has been recently challenged because of disappointing results of clinical trials designed to treat AD by reducing beta-amyloid levels, thus fuelling a renewed interest in tau. There is now robust evidence to indicate that tau pathology can spread within the central nervous system via a prion-like mechanism following a stereotypical pattern, which can be explained by the trans-synaptic inter-neuronal transfer of pathological tau. In the receiving neuron, tau has been shown to take multiple routes of internalisation, which are partially dependent on its conformation and aggregation status. Here, we review the emerging mechanisms proposed for the uptake of extracellular tau in neurons and the requirements for the propagation of its pathological conformers, addressing how they gain access to physiological tau monomers in the cytosol. Furthermore, we highlight some of the key mechanistic gaps of the field, which urgently need to be addressed to expand our understanding of tau propagation and lead to the identification of new therapeutic strategies for tauopathies.


Assuntos
Encéfalo/metabolismo , Emaranhados Neurofibrilares/metabolismo , Neurônios/metabolismo , Tauopatias/metabolismo , Proteínas tau/metabolismo , Animais , Transporte Biológico/fisiologia , Encéfalo/patologia , Humanos , Emaranhados Neurofibrilares/genética , Emaranhados Neurofibrilares/patologia , Neurônios/patologia , Tauopatias/genética , Tauopatias/patologia , Proteínas tau/genética
18.
Neurobiol Dis ; 140: 104816, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32088381

RESUMO

The cytoplasmic dynein motor complex transports essential signals and organelles from the cell periphery to the perinuclear region, hence is critical for the survival and function of highly polarized cells such as neurons. Dynein Light Chain Roadblock-Type 1 (DYNLRB1) is thought to be an accessory subunit required for specific cargos, but here we show that it is essential for general dynein-mediated transport and sensory neuron survival. Homozygous Dynlrb1 null mice are not viable and die during early embryonic development. Furthermore, heterozygous or adult knockdown animals display reduced neuronal growth, and selective depletion of Dynlrb1 in proprioceptive neurons compromises their survival. Conditional depletion of Dynlrb1 in sensory neurons causes deficits in several signaling pathways, including ß-catenin subcellular localization, and a severe impairment in the axonal transport of both lysosomes and retrograde signaling endosomes. Hence, DYNLRB1 is an essential component of the dynein complex, and given dynein's critical functions in neuronal physiology, DYNLRB1 could have a prominent role in the etiology of human neurodegenerative diseases.


Assuntos
Transporte Axonal/fisiologia , Dineínas/metabolismo , Células Receptoras Sensoriais/metabolismo , Animais , Proteínas de Transporte/metabolismo , Sobrevivência Celular , Células Cultivadas , Dineínas/genética , Lisossomos/metabolismo , Masculino , Camundongos , Neurogênese , Organelas/metabolismo , Transfecção
19.
J Anat ; 237(4): 603-617, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32533580

RESUMO

The neuromuscular junction (NMJ) is the highly specialised peripheral synapse formed between lower motor neuron terminals and muscle fibres. Post-synaptic acetylcholine receptors (AChRs), which are found in high density in the muscle membrane, bind to acetylcholine released into the synaptic cleft of the NMJ, thereby enabling the conversion of motor action potentials to muscle contractions. NMJs have been studied for many years as a general model for synapse formation, development and function, and are known to be early sites of pathological changes in many neuromuscular diseases. However, information is limited on the diversity of NMJs in different muscles, how synaptic morphology changes during development, and the relevance of these parameters to neuropathology. Here, this crucial gap was addressed using a robust and standardised semi-automated workflow called NMJ-morph to quantify features of pre- and post-synaptic NMJ architecture in an unbiased manner. Five wholemount muscles from wild-type mice were dissected and compared at immature (post-natal day, P7) and early adult (P31-32) timepoints. The inter-muscular variability was greater in mature post-synaptic AChR morphology than that of the pre-synaptic motor neuron terminal. Moreover, the developing NMJ showed greater differences across muscles than the mature synapse, perhaps due to the observed distinctions in synaptic growth between muscles. Nevertheless, the amount of nerve to muscle contact was consistent, suggesting that pathological denervation can be reliably compared across different muscles in mouse models of neurodegeneration. Additionally, mature post-synaptic endplate diameters correlated with fibre type, independently of muscle fibre diameter. Altogether, this work provides detailed information on healthy pre- and post-synaptic NMJ morphology from five anatomically and functionally distinct mouse muscles, delivering useful reference data for future comparison with neuromuscular disease models.


Assuntos
Envelhecimento/fisiologia , Músculo Esquelético/anatomia & histologia , Junção Neuromuscular/anatomia & histologia , Receptores Colinérgicos/metabolismo , Fatores Etários , Animais , Camundongos , Neurônios Motores/metabolismo , Músculo Esquelético/crescimento & desenvolvimento , Músculo Esquelético/metabolismo , Junção Neuromuscular/crescimento & desenvolvimento , Junção Neuromuscular/metabolismo
20.
Proc Natl Acad Sci U S A ; 114(16): E3324-E3333, 2017 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-28351971

RESUMO

Charcot-Marie-Tooth disease type 2D (CMT2D) is a peripheral nerve disorder caused by dominant, toxic, gain-of-function mutations in the widely expressed, housekeeping gene, GARS The mechanisms underlying selective nerve pathology in CMT2D remain unresolved, as does the cause of the mild-to-moderate sensory involvement that distinguishes CMT2D from the allelic disorder distal spinal muscular atrophy type V. To elucidate the mechanism responsible for the underlying afferent nerve pathology, we examined the sensory nervous system of CMT2D mice. We show that the equilibrium between functional subtypes of sensory neuron in dorsal root ganglia is distorted by Gars mutations, leading to sensory defects in peripheral tissues and correlating with overall disease severity. CMT2D mice display changes in sensory behavior concordant with the afferent imbalance, which is present at birth and nonprogressive, indicating that sensory neuron identity is prenatally perturbed and that a critical developmental insult is key to the afferent pathology. Through in vitro experiments, mutant, but not wild-type, GlyRS was shown to aberrantly interact with the Trk receptors and cause misactivation of Trk signaling, which is essential for sensory neuron differentiation and development. Together, this work suggests that both neurodevelopmental and neurodegenerative mechanisms contribute to CMT2D pathogenesis, and thus has profound implications for the timing of future therapeutic treatments.


Assuntos
Doença de Charcot-Marie-Tooth/patologia , Glicina-tRNA Ligase/fisiologia , Mutação , Receptor trkA/metabolismo , Células Receptoras Sensoriais/patologia , Animais , Células Cultivadas , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/metabolismo , Feminino , Humanos , Masculino , Camundongos , Camundongos Knockout , Receptor trkA/genética , Células Receptoras Sensoriais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA