Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Am J Hum Genet ; 74(2): 283-97, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14740317

RESUMO

Speech-sound disorder (SSD) is a complex behavioral disorder characterized by speech-sound production errors associated with deficits in articulation, phonological processes, and cognitive linguistic processes. SSD is prevalent in childhood and is comorbid with disorders of language, spelling, and reading disability, or dyslexia. Previous research suggests that developmental problems in domains associated with speech and language acquisition place a child at risk for dyslexia. Recent genetic studies have identified several candidate regions for dyslexia, including one on chromosome 3 segregating in a large Finnish pedigree. To explore common genetic influences on SSD and reading, we examined linkage for several quantitative traits to markers in the pericentrometric region of chromosome 3 in 77 families ascertained through a child with SSD. The quantitative scores measured several processes underlying speech-sound production, including phonological memory, phonological representation, articulation, receptive and expressive vocabulary, and reading decoding and comprehension skills. Model-free linkage analysis was followed by identification of sib pairs with linkage and construction of core shared haplotypes. In our multipoint analyses, measures of phonological memory demonstrated the strongest linkage (marker D3S2465, P=5.6 x 10(-5), and marker D3S3716, P=6.8 x 10(-4)). Tests for single-word decoding also demonstrated linkage (real word reading: marker D3S2465, P=.004; nonsense word reading: marker D3S1595, P=.005). The minimum shared haplotype in sib pairs with similar trait values spans 4.9 cM and is bounded by markers D3S3049 and D3S3045. Our results suggest that domains common to SSD and dyslexia are pleiotropically influenced by a putative quantitative trait locus on chromosome 3.


Assuntos
Transtornos da Articulação/genética , Cromossomos Humanos Par 3 , Dislexia/genética , Transtornos da Linguagem/genética , Mapeamento Cromossômico , Ligação Genética , Genótipo , Humanos , Locos de Características Quantitativas
2.
Proc Natl Acad Sci U S A ; 101(40): 14485-90, 2004 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-15452352

RESUMO

Age-related cataracts are one of the leading causes of visual impairment and blindness among the elderly worldwide. Among age-related cataracts, cortical opacities rank as the second most common type; however, little is known about their molecular pathogenesis or genetics. To identify susceptibility loci for cortical cataracts, we genotyped a subset of families (102 families; n = 224 sib pairs) from the Beaver Dam Eye Study and performed a model-free genome-wide linkage analysis for markers linked to a quantitative measure of cortical opacity. We obtained evidence for linkage at marker D1S1622 on chromosome 1p35 (P < 0.0002) and at marker D6S1053 on 6q12 (P < 0.00008) in the initial scan. Five additional regions on 1q31, 2p24, 2q11, 4q28, and 15q13 that are suggestive of linkage (P < or = 0.01 or logarithm of the likelihood ratio > or = 1.18) were observed. The region on chromosomes 6p12-q12 was selected for fine mapping, and the intermarker distance was reduced to 3 cM by adding 11 markers in the interval between D6S1017 and D6S1021. After fine mapping, significant evidence of linkage remained on chromosome 6p12-q12 at D6S1053 (P < 0.00005). The current genome scan for age-related cortical cataracts may lead to identification of novel genes, because few regions identified in the current scan have previously been implicated in congenital or age-related cataracts.


Assuntos
Catarata/genética , Cromossomos Humanos Par 6/genética , Fatores Etários , Idoso , Mapeamento Cromossômico , Estudos de Coortes , Feminino , Marcadores Genéticos , Genoma Humano , Humanos , Masculino , Fenótipo , Wisconsin
3.
Am J Hum Genet ; 72(6): 1412-24, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12717633

RESUMO

Age-related maculopathy (ARM) is a leading cause of visual impairment among the elderly in Western populations. To identify ARM-susceptibility loci, we genotyped a subset of subjects from the Beaver Dam (WI) Eye Study and performed a model-free genomewide linkage analysis for markers linked to a quantitative measure of ARM. We initially genotyped 345 autosomal markers in 325 individuals (N=263 sib pairs) from 102 pedigrees. Ten regions suggestive of linkage with ARM were observed on chromosomes 3, 5, 6, 12, 15, and 16. Prior to fine mapping, the most significant regions were an 18-cM region on chromosome 12, near D12S1300 (P=.0159); a region on chromosome 3, near D3S1763, with a P value of.0062; and a 6-cM region on chromosome 16, near D16S769, with a P value of.0086. After expanding our analysis to include 25 additional fine-mapping markers, we found that a 14-cM region on chromosome 12, near D12S346 (located at 106.89 cM), showed the strongest indication of linkage, with a P value of.004. Three other regions, on chromosomes 5, 6, and 15, that were nominally significant at P< or =.01 are also appropriate for fine mapping.


Assuntos
Testes Genéticos/métodos , Degeneração Macular/genética , Característica Quantitativa Herdável , Adulto , Idoso , Idoso de 80 Anos ou mais , Cromossomos Humanos Par 12 , Cromossomos Humanos Par 15 , Cromossomos Humanos Par 16 , Cromossomos Humanos Par 5 , Cromossomos Humanos Par 6 , Feminino , Ligação Genética , Marcadores Genéticos , Predisposição Genética para Doença , Genoma Humano , Genótipo , Humanos , Degeneração Macular/diagnóstico , Masculino , Pessoa de Meia-Idade , Linhagem , Irmãos , Wisconsin
4.
Am J Hum Genet ; 74(1): 20-39, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-14691731

RESUMO

To examine the genetic basis of age-related macular degeneration (ARMD), a degenerative disease of the retinal pigment epithelium and neurosensory retina, we conducted a genomewide scan in 34 extended families (297 individuals, 349 sib pairs) ascertained through index cases with neovascular disease or geographic atrophy. Family and medical history was obtained from index cases and family members. Fundus photographs were taken of all participating family members, and these were graded for severity by use of a quantitative scale. Model-free linkage analysis was performed, and tests of heterogeneity and epistasis were conducted. We have evidence of a major locus on chromosome 15q (GATA50C03 multipoint P=1.98x10-7; empirical P< or =1.0x10-5; single-point P=3.6x10-7). This locus was present as a weak linkage signal in our previous genome scan for ARMD, in the Beaver Dam Eye Study sample (D15S659, multipoint P=.047), but is otherwise novel. In this genome scan, we observed a total of 13 regions on 11 chromosomes (1q31, 2p21, 4p16, 5q34, 9p24, 9q31, 10q26, 12q13, 12q23, 15q21, 16p12, 18p11, and 20q13), with a nominal multipoint significance level of P< or =.01 or LOD > or =1.18. Family-by-family analysis of the data, performed using model-free linkage methods, suggests that there is evidence of heterogeneity in these families. For example, a single family (family 460) individually shows linkage evidence at 8 loci, at the level of P<.0001. We conducted tests for heterogeneity, which suggest that ARMD susceptibility loci on chromosomes 9p24, 10q26, and 15q21 are not present in all families. We tested for mutations in linked families and examined SNPs in two candidate genes, hemicentin-1 and EFEMP1, in subsamples (145 and 189 sib pairs, respectively) of the data. Mutations were not observed in any of the 11 exons of EFEMP1 nor in exon 104 of hemicentin-1. The SNP analysis for hemicentin-1 on 1q31 suggests that variants within or in very close proximity to this gene cause ARMD pathogenesis. In summary, we have evidence for a major ARMD locus on 15q21, which, coupled with numerous other loci segregating in these families, suggests complex oligogenic patterns of inheritance for ARMD.


Assuntos
Envelhecimento/fisiologia , Predisposição Genética para Doença/genética , Genoma Humano , Degeneração Macular/genética , Idoso , Mapeamento Cromossômico , Feminino , Marcadores Genéticos , Humanos , Escore Lod , Degeneração Macular/fisiopatologia , Masculino , Pessoa de Meia-Idade , Fenótipo , Irmãos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA