Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Biol Chem ; 294(12): 4538-4545, 2019 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-30696770

RESUMO

Astrotactin 1 (Astn1) and Astn2 are membrane proteins that function in glial-guided migration, receptor trafficking, and synaptic plasticity in the brain as well as in planar polarity pathways in the skin. Here we used glycosylation mapping and protease protection approaches to map the topologies of mouse Astn1 and Astn2 in rough microsomal membranes and found that Astn2 has a cleaved N-terminal signal peptide, an N-terminal domain located in the lumen of the rough microsomal membranes (topologically equivalent to the extracellular surface in cells), two transmembrane helices, and a large C-terminal lumenal domain. We also found that Astn1 has the same topology as Astn2, but we did not observe any evidence of signal peptide cleavage in Astn1. Both Astn1 and Astn2 mature through endoproteolytic cleavage in the second transmembrane helix; importantly, we identified the endoprotease responsible for the maturation of Astn1 and Astn2 as the endoplasmic reticulum signal peptidase. Differences in the degree of Astn1 and Astn2 maturation possibly contribute to the higher levels of the C-terminal domain of Astn1 detected on neuronal membranes of the central nervous system. These differences may also explain the distinct cellular functions of Astn1 and Astn2, such as in membrane adhesion, receptor trafficking, and planar polarity signaling.


Assuntos
Glicoproteínas/metabolismo , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Serina Endopeptidases/metabolismo , Animais , Biocatálise , Retículo Endoplasmático/metabolismo , Glicoproteínas/química , Glicosilação , Membranas Intracelulares/metabolismo , Camundongos , Microssomos/metabolismo , Proteínas do Tecido Nervoso/química , Proteólise
2.
Biochem J ; 473(23): 4361-4372, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27694387

RESUMO

Voltage-dependent K+ (KV) channels control K+ permeability in response to shifts in the membrane potential. Voltage sensing in KV channels is mediated by the positively charged transmembrane domain S4. The best-characterized KV channel, KvAP, lacks the distinct hydrophilic region corresponding to the S3-S4 extracellular loop that is found in other K+ channels. In the present study, we evaluated the topogenic properties of the transmembrane regions within the voltage-sensing domain in KvAP. S3 had low membrane insertion activity, whereas S4 possessed a unique type-I signal anchor (SA-I) function, which enabled it to insert into the membrane by itself. S4 was also found to function as a stop-transfer signal for retention in the membrane. The length and structural nature of the extracellular S3-S4 loop affected the membrane insertion of S3 and S4, suggesting that S3 membrane insertion was dependent on S4. Replacement of charged residues within the transmembrane regions with residues of opposite charge revealed that Asp72 in S2 and Glu93 in S3 contributed to membrane insertion of S3 and S4, and increased the stability of S4 in the membrane. These results indicate that the SA-I function of S4, unique among K+ channels studied to date, promotes the insertion of S3 into the membrane, and that the charged residues essential for voltage sensing contribute to the membrane-insertion of the voltage sensor domain in KvAP.


Assuntos
Canais de Potássio de Abertura Dependente da Tensão da Membrana/química , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Animais , Cães , Modelos Biológicos , Plasmídeos/genética , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Domínios Proteicos/genética , Domínios Proteicos/fisiologia , Transporte Proteico/genética , Transporte Proteico/fisiologia , Coelhos
3.
Biochemistry ; 55(40): 5772-5779, 2016 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-27620701

RESUMO

Insertion of a nascent membrane protein segment by the translocon channel into the bilayer is naturally promoted by high segmental hydrophobicity, but its selection as a transmembrane (TM) segment is complicated by the diverse environments (aqueous vs lipidic) the protein encounters and by the fact that most TM segments contain a substantial amount (∼30%) of polar residues, as required for protein structural stabilization and/or function. To examine the contributions of these factors systematically, we designed and synthesized a peptide library consisting of pairs of compositionally identical, but sequentially different, peptides with 19-residue core sequences varying (i) in Leu positioning (with five or seven Leu residues clustered into a contiguous "block" in the middle of the segment or "scrambled" throughout the sequence) and (ii) in Ser content (0-6 residues). The library was analyzed by a combination of biophysical and biological techniques, including HPLC retention times, circular dichroism measurements of helicity in micelle and phospholipid bilayer media, and relative blue shifts in Trp fluorescence maxima, as well as by the extent of membrane insertion in a translocon-mediated assay using microsomal membranes from dog pancreas endoplasmic reticulum. We found that local blocks of high hydrophobicity heighten the translocon's propensity to insert moderately hydrophilic sequences, until a "threshold hydrophilicity" is surpassed whereby segments no longer insert even in the presence of Leu blocks. This study codifies the prerequisites of apolar/polar content and residue positioning that define nascent TM segments, illustrates the accuracy in their prediction, and highlights how a single disease-causing mutation can tip the balance toward anomalous translocation/insertion.


Assuntos
Proteínas de Membrana/química , Sequência de Aminoácidos , Aminoácidos/química , Cromatografia Líquida de Alta Pressão , Dicroísmo Circular , Interações Hidrofóbicas e Hidrofílicas , Lipossomos , Micelas , Homologia de Sequência de Aminoácidos , Espectrometria de Fluorescência
4.
Biochemistry ; 54(7): 1465-73, 2015 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-25635746

RESUMO

Biophysical hydrophobicity scales suggest that partitioning of a protein segment from an aqueous phase into a membrane is governed by its perceived segmental hydrophobicity but do not establish specifically (i) how the segment is identified in vivo for translocon-mediated insertion or (ii) whether the destination lipid bilayer is biochemically receptive to the inserted sequence. To examine the congruence between these dual requirements, we designed and synthesized a library of Lys-tagged peptides of a core length sufficient to span a bilayer but with varying patterns of sequence, each composed of nine Leu residues, nine Ser residues, and one (central) Trp residue. We found that peptides containing contiguous Leu residues (Leu-block peptides, e.g., LLLLLLLLLWSSSSSSSSS), in comparison to those containing discontinuous stretches of Leu residues (non-Leu-block peptides, e.g., SLSLLSLSSWSLLSLSLLS), displayed greater helicity (circular dichroism spectroscopy), traveled slower during sodium dodecyl sulfate-polyacrylamide gel electrophoresis, had longer reverse phase high-performance liquid chromatography retention times on a C-18 column, and were helical when reconstituted into 1-palmitoyl-2-oleoylglycero-3-phosphocholine liposomes, each observation indicating superior lipid compatibility when a Leu-block is present. These parameters were largely paralleled in a biological membrane insertion assay using microsomal membranes from dog pancreas endoplasmic reticulum, where we found only the Leu-block sequences successfully inserted; intriguingly, an amphipathic peptide (SLLSSLLSSWLLSSLLSSL; Leu face, Ser face) with biophysical properties similar to those of Leu-block peptides failed to insert. Our overall results identify local sequence lipid compatibility rather than average hydrophobicity as a principal determinant of transmembrane segment potential, while demonstrating that further subtleties of hydrophobic and helical patterning, such as circumferential hydrophobicity in Leu-block segments, promote translocon-mediated insertion.


Assuntos
Leucina/química , Bicamadas Lipídicas/metabolismo , Proteínas de Membrana/química , Peptídeos/química , Sequência de Aminoácidos , Animais , Dicroísmo Circular , Cães , Interações Hidrofóbicas e Hidrofílicas , Leucina/metabolismo , Proteínas de Membrana/metabolismo , Microssomos/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Peptídeos/metabolismo , Estrutura Secundária de Proteína , Serina/química , Serina/metabolismo
5.
Elife ; 82019 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-31246176

RESUMO

XBP1u, a central component of the unfolded protein response (UPR), is a mammalian protein containing a functionally critical translational arrest peptide (AP). Here, we present a 3 Å cryo-EM structure of the stalled human XBP1u AP. It forms a unique turn in the ribosomal exit tunnel proximal to the peptidyl transferase center where it causes a subtle distortion, thereby explaining the temporary translational arrest induced by XBP1u. During ribosomal pausing the hydrophobic region 2 (HR2) of XBP1u is recognized by SRP, but fails to efficiently gate the Sec61 translocon. An exhaustive mutagenesis scan of the XBP1u AP revealed that only 8 out of 20 mutagenized positions are optimal; in the remaining 12 positions, we identify 55 different mutations increase the level of translational arrest. Thus, the wildtype XBP1u AP induces only an intermediate level of translational arrest, allowing efficient targeting by SRP without activating the Sec61 channel.


Assuntos
Ribossomos/metabolismo , Proteína 1 de Ligação a X-Box/química , Proteína 1 de Ligação a X-Box/genética , Sequência de Aminoácidos , Animais , Fenômenos Biomecânicos , Análise Mutacional de DNA , Endorribonucleases/metabolismo , Humanos , Modelos Moleculares , Mutagênese , Peptídeos/química , Peptidil Transferases/metabolismo , Ligação Proteica , Proteínas Serina-Treonina Quinases/metabolismo , Estabilidade Proteica , Coelhos , Ribossomos/ultraestrutura , Canais de Translocação SEC/química , Canais de Translocação SEC/metabolismo , Partícula de Reconhecimento de Sinal/metabolismo , Transdução de Sinais , Resposta a Proteínas não Dobradas , Proteína 1 de Ligação a X-Box/ultraestrutura
7.
J Cardiothorac Surg ; 9: 99, 2014 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-24915763

RESUMO

BACKGROUND: The aim of this study was to compare outcome of patients with previous cardiac surgery undergoing transapical aortic valve implantation (Redo-TAVI) to those undergoing classic aortic valve replacement (Redo-AVR) by using propensity analysis. METHODS: From January 2005 through May 2012, 52 high-risk patients underwent Redo-TAVI using a pericardial xenograft fixed within a stainless steel, balloon-expandable stent (Edwards SAPIEN™). During the same period of time 167 patients underwent classic Redo-AVR. Logistic regression analysis was used to identify covariates among 11 baseline patient variables including the type of initial surgery. Using the significant regression coefficients, each patient's propensity score was calculated, allowing selectively matched subgroups of 40 patients each. Initial surgery included coronary artery bypass grafting in 30 patients, aortic valve replacement in 7 patients and mitral valve reconstruction in 3 patients in each group. Follow-up was 4 ± 2 years and was 100% complete. RESULTS: Postoperative chest tube drainage (163 ± 214 vs. 562 ± 332 ml/24 h, p = 0.02) and incidence of early permanent neurologic deficit (0 vs. 13%, p = 0.04) was lower in patients with Redo-TAVI and there was a trend towards improved 30-day survival (p = 0.06). Also we detected a decreased ventilation time (p = 0.04) and lower transfusion rate of allogenic blood products (p ≤ 0.05) in the Redo-TAVI group. At late follow up differences regarding incidence of major adverse events, including death and permanent neurologic deficits (25% vs. 43%, p = 0.01) statistically supported early postoperative findings. CONCLUSION: The encouraging results regarding early and long-term outcomes following TAVI in patients with previous cardiac surgery show, that this evolving approach may be particularly beneficial in this patient cohort.


Assuntos
Valva Aórtica/cirurgia , Cateterismo Cardíaco/métodos , Implante de Prótese de Valva Cardíaca/métodos , Complicações Pós-Operatórias/epidemiologia , Pontuação de Propensão , Medição de Risco/métodos , Idoso , Idoso de 80 Anos ou mais , Estenose da Valva Aórtica/cirurgia , Cateterismo Cardíaco/efeitos adversos , Procedimentos Cirúrgicos Cardíacos , Feminino , Seguimentos , Alemanha/epidemiologia , Implante de Prótese de Valva Cardíaca/efeitos adversos , Humanos , Incidência , Masculino , Sistema de Registros , Estudos Retrospectivos , Fatores de Tempo
8.
Nat Commun ; 5: 4863, 2014 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-25204588

RESUMO

The favourable transfer free energy for a transmembrane (TM) α-helix between the aqueous phase and lipid bilayer underlies the stability of membrane proteins. However, the connection between the energetics and process of membrane protein assembly by the Sec61/SecY translocon complex in vivo is not clear. Here, we directly determine the partitioning free energies of a family of designed peptides using three independent approaches: an experimental microsomal Sec61 translocon assay, a biophysical (spectroscopic) characterization of peptide insertion into hydrated planar lipid bilayer arrays, and an unbiased atomic-detail equilibrium folding-partitioning molecular dynamics simulation. Remarkably, the measured free energies of insertion are quantitatively similar for all three approaches. The molecular dynamics simulations show that TM helix insertion involves equilibrium with the membrane interface, suggesting that the interface may play a role in translocon-guided insertion.


Assuntos
Membrana Celular/metabolismo , Proteínas de Membrana/metabolismo , Termodinâmica , Motivos de Aminoácidos , Proteínas de Escherichia coli/metabolismo , Simulação de Dinâmica Molecular , Estrutura Secundária de Proteína , Canais de Translocação SEC , Serina Endopeptidases/metabolismo , Análise Espectral
9.
Nat Struct Mol Biol ; 19(10): 1018-22, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23001004

RESUMO

Membrane proteins destined for insertion into the inner membrane of bacteria or the endoplasmic reticulum membrane in eukaryotic cells are synthesized by ribosomes bound to the bacterial SecYEG or the homologous eukaryotic Sec61 translocon. During co-translational membrane integration, transmembrane α-helical segments in the nascent chain exit the translocon through a lateral gate that opens toward the surrounding membrane, but the mechanism of lateral exit is not well understood. In particular, little is known about how a transmembrane helix behaves when entering and exiting the translocon. Using translation-arrest peptides from bacterial SecM proteins and from the mammalian Xbp1 protein as force sensors, we show that substantial force is exerted on a transmembrane helix at two distinct points during its transit through the translocon channel, providing direct insight into the dynamics of membrane integration.


Assuntos
Membrana Celular/química , Membrana Celular/metabolismo , Proteínas de Escherichia coli/metabolismo , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Animais , Cães , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Glicosilação , Interações Hidrofóbicas e Hidrofílicas , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Microssomos/metabolismo , Dados de Sequência Molecular , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA