RESUMO
The optimal placement of a cochlear implant (CI) electrode inside the scala tympani compartment to create an effective electrode-neural interface is the base for a successful CI treatment. The characteristics of an effective electrode design include (a) electrode matching every possible variation in the inner ear size, shape, and anatomy, (b) electrically covering most of the neuronal elements, and (c) preserving intra-cochlear structures, even in non-hearing preservation surgeries. Flexible electrode arrays of various lengths are required to reach an angular insertion depth of 680° to which neuronal cell bodies are angularly distributed and to minimize the rate of electrode scalar deviation. At the time of writing this article, the current scientific evidence indicates that straight lateral wall electrode outperforms perimodiolar electrode by preventing electrode tip fold-over and scalar deviation. Most of the available literature on electrode insertion depth and hearing outcomes supports the practice of physically placing an electrode to cover both the basal and middle turns of the cochlea. This is only achievable with longer straight lateral wall electrodes as single-sized and pre-shaped perimodiolar electrodes have limitations in reaching beyond the basal turn of the cochlea and in offering consistent modiolar hugging placement in every cochlea. For malformed inner ear anatomies that lack a central modiolar trunk, the perimodiolar electrode is not an effective electrode choice. Most of the literature has failed to demonstrate superiority in hearing outcomes when comparing perimodiolar electrodes with straight lateral wall electrodes from single CI manufacturers. In summary, flexible and straight lateral wall electrode type is reported to be gentle to intra-cochlear structures and has the potential to electrically stimulate most of the neuronal elements, which are necessary in bringing full benefit of the CI device to recipients.
RESUMO
Cell-matrix interactions in a three-dimensional (3D) extracellular matrix (ECM) are of fundamental importance in living tissue, and their in vitro reconstruction in bioartificial structures represents a core target of contemporary tissue engineering concepts. For a detailed analysis of cell-matrix interaction under highly controlled conditions, we developed a novel ECM evaluation culture device (EECD) that allows for a precisely defined surface-seeding of 3D ECM scaffolds, irrespective of their natural geometry. The effectiveness of EECD was evaluated in the context of heart valve tissue engineering. Detergent decellularized pulmonary cusps were mounted in EECD and seeded with endothelial cells (ECs) to study EC adhesion, morphology and function on a 3D ECM after 3, 24, 48 and 96 h. Standard EC monolayers served as controls. Exclusive top-surface-seeding of 3D ECM by viable ECs was demonstrated by laser scanning microscopy (LSM), resulting in a confluent re-endothelialization of the ECM after 96 h. Cell viability and protein expression, as demonstrated by MTS assay and western blot analysis (endothelial nitric oxide synthase, von Willebrand factor), were preserved at maintained levels over time. In conclusion, EECD proves as a highly effective system for a controlled repopulation and in vitro analysis of cell-ECM interactions in 3D ECM.
Assuntos
Técnicas de Cultura de Células/instrumentação , Técnicas de Cultura de Células/métodos , Matriz Extracelular/metabolismo , Animais , Adesão Celular , Sobrevivência Celular , Células Cultivadas , Endotélio/metabolismo , Ovinos , Sus scrofaAssuntos
Resinas Acrílicas/química , Cristalização/métodos , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Nanotecnologia/métodos , Temperatura Alta , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Fotoquímica/métodos , Polímeros/química , Propriedades de Superfície , TemperaturaRESUMO
The influence of the number of repeating units in self-assembled monolayers (SAMs) of ethylene glycol and of their end-group termination on the settlement and adhesion of two types of algal cells, viz., zoospores of the macroalga Ulva and cells of the diatom Navicula , was studied. The findings are related to the resistance of these surfaces against fibrinogen adsorption. Results showed that settlement and adhesion of algal cells to oligo(ethylene glycol) (OEG; 2-6 EG units) and poly(ethylene glycol) (PEG; MW = 2000, 5000) SAMs was low, while resistance was less effective for mono(ethylene glycol) (EG(1)OH)-terminated surfaces. These findings concur with former protein adsorption studies. In situ microscopy showed that PEG surfaces inhibited the settlement of zoospores, i.e., zoospores did not attach to the surfaces and remained motile. In contrast, on EG(2-6)OH surfaces, although zoospores settled, i.e., they secreted adhesive and lost motility, adhesion between secreted adhesive and the surface was extremely weak, and the settled spores were unable to bond to the surfaces. The influence of surface properties such as hydration, conformational degrees of freedom, and interfacial characteristics of the SAMs is discussed to understand the underlying repulsive mechanisms occurring in (ethylene glycol)-based coatings.
Assuntos
Etilenoglicol/química , Eucariotos/metabolismo , Proteínas/química , Adsorção , Adesão Celular , Físico-Química/métodos , Microscopia/métodos , Conformação Molecular , Polietilenoglicóis/química , Polímeros/química , Propriedades de Superfície , UlvaRESUMO
Protein resistance of self-assembled monolayers (SAMs) of hexa(ethylene glycols) (EG(6)) has previously been shown to be dependent on the alkoxyl end-group termination of the SAM, which determines wettability [S. Herrwerth, W. Eck, S. Reinhardt, and M. Grunze, J. Am. Chem. Soc. 125, 9359 (2003)]. In the present study, the same series of hexa(ethylene glycols) was used to examine the correlation between protein resistance and the settlement and adhesion of eukaryotic algal cells, viz., zoospores of the macroalga Ulva and cells of the diatom Navicula, which adhere to the substratum through the secretion of protein-containing glues. Results showed that the initial settlement of Ulva zoospores was highest on the hydrophilic EG(6)OH but that cells were only weakly adhered. The number of Ulva zoospores and Navicula cells firmly adhered to the SAMs systematically increased with decreasing wettability, as shown for the protein fibrinogen. The data are discussed in terms of hydration forces and surface charges in the SAMs.