Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Int J Mol Sci ; 23(9)2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35563319

RESUMO

Chronic inflammation is one of the hallmarks of chronic wounds and is tightly coupled to immune regulation. The dysregulation of the immune system leads to continuing inflammation and impaired wound healing and, subsequently, to chronic skin wounds. In this review, we discuss the role of the immune system, the involvement of inflammatory mediators and reactive oxygen species, the complication of bacterial infections in chronic wound healing, and the still-underexplored potential of natural bioactive compounds in wound treatment. We focus on natural compounds with antioxidant, anti-inflammatory, and antibacterial activities and their mechanisms of action, as well as on recent wound treatments and therapeutic advancements capitalizing on nanotechnology or new biomaterial platforms.


Assuntos
Pele , Cicatrização , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Materiais Biocompatíveis/uso terapêutico , Humanos , Inflamação/tratamento farmacológico
2.
J Neurochem ; 144(6): 748-760, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29280499

RESUMO

Secondary neuronal death is a serious stroke complication. This process is facilitated by the conversion of glial cells to the reactive pro-inflammatory phenotype that induces neurodegeneration. Therefore, regulation of glial activation is a compelling strategy to reduce brain damage after stroke. However, drugs have difficulties to access the CNS, and to specifically target glial cells. In the present work, we explored the use core-shell polyamidoamine tecto-dendrimer (G5G2.5 PAMAM) and studied its ability to target distinct populations of stroke-activated glial cells. We found that G5G2.5 tecto-dendrimer is actively engulfed by primary glial cells in a time- and dose-dependent manner showing high cellular selectivity and lysosomal localization. In addition, oxygen-glucose deprivation or lipopolysaccharides exposure in vitro and brain ischemia in vivo increase glial G5G2.5 uptake; not being incorporated by neurons or other cell types. We conclude that G5G2.5 tecto-dendrimer is a highly suitable carrier for targeted drug delivery to reactive glial cells in vitro and in vivo after brain ischemia.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Dendrímeros/farmacocinética , Neuroglia/metabolismo , Acidente Vascular Cerebral/tratamento farmacológico , Animais , Isquemia Encefálica/complicações , Dendrímeros/química , Sistemas de Liberação de Medicamentos/métodos , Masculino , Cultura Primária de Células , Ratos Wistar , Acidente Vascular Cerebral/complicações
3.
Nanomedicine ; 8(8): 1319-28, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22366598

RESUMO

Ultradeformable archaeosomes (UDA) are vesicles made of soybean phosphatidylcholine (SPC), sodium cholate (NaChol) and polar lipids from Halorubrum tebenquichense (3:1:3 wt/wt). Although ultradeformable liposomes (UDL, made of SPC and NaChol at 6:1 wt/wt) and UDA were neither captured nor caused cytotoxicity on keratinocytes, UDA was avidly captured by macrophages, their viability being reduced by 0.4-1.6 mg/mL phospholipids by 25 to 60%. Instead, UDL were poorly captured and caused no toxicity. Balb/C mice immunized by the topical route with four doses of ovalbumin (OVA)-loaded UDA, at 75 µg OVA/600 µg phospholipids (125 nm mean size and -42 mV zeta potential), induced IgG titers tenfold to 100-fold higher than those immunized with OVA-loaded UDL at the same dosage. Both matrices penetrate to the same skin depth (nearly 10 µm after 1 hour on excised human skin), being the higher topical adjuvancy and higher phagocytic uptake of UDA related to its glycolipid content. FROM THE CLINICAL EDITOR: This work summarizes key findings related to the development of ultradeformable archaeosomes as vehicles utilized in transdermal delivery systems with improved skin penetration.


Assuntos
Lipídeos , Lipossomos , Fosfatidilcolinas , Colato de Sódio , Administração Tópica , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Feminino , Halorubrum/química , Humanos , Queratinócitos/efeitos dos fármacos , Lipídeos/administração & dosagem , Lipídeos/química , Lipossomos/administração & dosagem , Camundongos , Fosfatidilcolinas/administração & dosagem , Fosfatidilcolinas/química , Absorção Cutânea/fisiologia , Colato de Sódio/administração & dosagem , Colato de Sódio/química , Vacinação
4.
Colloids Surf B Biointerfaces ; 191: 110961, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32208325

RESUMO

Oral administration of antioxidant and anti-inflammatory drugs have the potential to improve the current therapy of inflammatory bowel disease. Success of oral treatments, however, depends on the capacity of drugs to remain structurally stable along the gastrointestinal tract, and on the feasibility of accessing the target cells. Delivering anti-inflammatory and antioxidant drugs to macrophages using targeted nanoparticles, could make treatments more efficient. In this work structural features and in vitro activity of macrophage-targeted nanostructured archaeolipid carriers (NAC) containing the high antioxidant dipolar C50 carotenoid bacterioruberin (BR) plus dexamethasone (Dex): NAC-Dex, are described. Ultra-small (66 nm), -32 mV ζ potential, 1200 µg Dex /ml NAC-Dex, consisted of a compritol and BR core, covered by a shell of sn 2,3 ether linked archaeolipids and Tween 80 (2: 2: 1.2: 3 % w/w) were obtained. NAC-Dex were extensively captured by macrophages and Caco-2 cells and displayed high anti-inflammatory and antioxidant activities on a gut inflammation model made of Caco-2 cells and lipopolysaccharide stimulated THP-1 derived macrophages reducing 65 % and 55 % TNF-α and IL-8 release, respectively and 60 % reactive oxygen species production. NAC-Dex also reversed the morphological changes induced by inflammation and increased the transepithelial electrical resistance, partly reconstituting the barrier function. Activity of BR and Dex in NAC-Dex was partially protected after simulated gastrointestinal digestion, improving the chances of BR-Dex joint activity. Results suggest that oral NAC-Dex deserve further exploration as intestinal barrier repairing agent.


Assuntos
Carotenoides/farmacologia , Dexametasona/farmacologia , Trato Gastrointestinal/efeitos dos fármacos , Halobacteriaceae/metabolismo , Inflamação/tratamento farmacológico , Macrófagos/efeitos dos fármacos , Nanopartículas/administração & dosagem , Anti-Inflamatórios/farmacologia , Células CACO-2 , Quimioterapia Combinada , Trato Gastrointestinal/lesões , Humanos , Lipopolissacarídeos/farmacologia , Macrófagos/metabolismo , Nanopartículas/química
5.
Colloids Surf B Biointerfaces ; 179: 479-487, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31005743

RESUMO

Oxidative stress plays an essential role in the pathogenesis and progression of inflammatory bowel disease. Co-administration of antioxidants and anti-inflammatory drugs has shown clinical benefits. Due to its significant reactive oxygen species (ROS) scavenging ability, great interest has been focused on superoxide dismutase (SOD) for therapeutic use. However, oral SOD is exposed to biochemical degradation along gastrointestinal transit. Furthermore, the antioxidant activity of SOD must be achieved intracellularly, therefore its cell entry requires endocytic mediating mechanisms. In this work, SOD was loaded into nanoarchaeosomes (ARC-SOD), nanovesicles fully made of sn 2,3 ether linked phytanyl saturated archaeolipids to protect and target SOD to inflammatory macrophages upon oral administration. Antioxidant and anti-inflammatory activities of ARC-SOD, non-digested and digested in simulated gastrointestinal fluids, on macrophages stimulated with H2O2 and lipopolysaccharide were determined and compared with those of free SOD and SOD encapsulated into highly stable liposomes (LIPO-SOD). Compared to SOD and LIPO-SOD, ARC-SOD (170 ± 14 nm, -30 ± 4 mV zeta potential, 122 mg protein/g phospholipids) showed the highest antioxidant and anti-inflammatory activity: it reversed the cytotoxic effect of H2O2, decreased intracellular ROS and completely suppressed the production of IL-6 and TNF-α on stimulated J774 A.1 cells. Moreover, while the activity of LIPO-SOD was lost upon preparation, gastrointestinal digestion and storage, ARC-SOD was easy to prepare and retained its antioxidant capacity upon digestion in simulated gastrointestinal fluids and after 5 months of storage. Because of their structural and pharmacodynamic features, ARC-SOD may be suitable for oral targeted delivery of SOD to inflamed mucosa.


Assuntos
Archaea/química , Sistemas de Liberação de Medicamentos , Inflamação/patologia , Macrófagos/patologia , Nanopartículas/química , Superóxido Dismutase/metabolismo , Animais , Anti-Inflamatórios/farmacologia , Células CACO-2 , Bovinos , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Coloides/química , Humanos , Concentração de Íons de Hidrogênio , Lipopolissacarídeos/farmacologia , Lipossomos , Macrófagos/efeitos dos fármacos , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Colato de Sódio/análise
6.
Ann N Y Acad Sci ; 1405(1): 202-214, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28985028

RESUMO

Targeted topical application promises high drug concentrations in the skin and low systemic adverse effects. To locate drugs and drug-delivery systems like nanocarriers, fluorescent dyes are commonly used as drug surrogates or nanocarrier labels in micrographs of tissue sections. Here, we investigate how labeling degree, concentration of fluorophore, and nanocarrier may affect the interpretation of these micrographs. False-negative penetration results due to inter- and intramolecular quenching effects are likely. Using tecto-dendrimers as an example, we present a detailed analysis of pitfalls in the (semi-)quantitative evaluation of skin nanocarrier penetration. Fluorescence lifetime imaging microscopy (FLIM) allows distinguishing the target fluorescence of dye-tagged nanocarriers from skin autofluorescence, providing a highly sensitive tool for clear-cut localization of the nanocarriers. Cluster-FLIM images reveal that FITC-labeled tecto-dendrimers penetrate the stratum corneum of human skin ex vivo and reconstructed human skin but do not cross the tight junction barrier.


Assuntos
Nanoestruturas , Imagem Óptica/métodos , Pele/diagnóstico por imagem , Junções Íntimas/metabolismo , Dendrímeros , Sistemas de Liberação de Medicamentos , Fluorescência , Corantes Fluorescentes , Humanos
7.
Colloids Surf B Biointerfaces ; 139: 190-8, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26709977

RESUMO

Aiming to improve the topical delivery of AmB to treat cutaneous fungal infections and leishmaniasis, ultradeformable liposomes containing amphotericin B (AmB-UDL) were prepared, and structural and functional characterized. The effect of different edge activators, phospholipid and AmB concentration, and phospholipid to edge activator ratio on liposomal deformability, as well as on AmB liposomal content, was tested. Liposomes having Tween 80 as edge activator resulted of maximal deformability and AmB/phospholipid ratio. These consisted of AmB-UDL of 107±8nm diameter, 0.078-polydispersity index and -3±0.2mV Z potential, exhibiting monomeric AmB encapsulated in the bilayer at a 75% encapsulation efficiency. After its cytotoxicity on keratinocytes (HaCaT cells) and macrophages (J774 cells) was determined, the in vitro antifungal activity of AmB-UDL was assayed. It was found that fungal strains (albicans and non-albicans Candida ATCC strains and clinical isolates of C. albicans) were more sensitive to AmB-UDL than mammal cells. Minimum inhibitory concentration values for AmB-UDL were 5-24 and 24-50 times lower than IC50 for J774 and HaCaT cells, respectively. AmB-UDL at 1.25µg/ml also displayed 100 and 75% anti- Leishmania braziliensis promastigote and amastigote activity, respectively. Finally, upon 1h of non-occlusive incubation, the total accumulation of AmB in human skin was 40 times higher when applied as AmB-UDL than as AmBisome. AmB-UDL provided a profound AmB penetration toward deep epithelial layers, achieved without classical permeation enhancers. Because of that, topical treatments of cutaneous fungal infection and leishmaniasis with AmB-UDL may be regarded of potential of clinical significance.


Assuntos
Anfotericina B/farmacologia , Antifúngicos/farmacologia , Antiprotozoários/farmacologia , Lipossomos/química , Absorção Cutânea , Anfotericina B/química , Anfotericina B/farmacocinética , Animais , Antifúngicos/química , Antifúngicos/farmacocinética , Antiprotozoários/química , Antiprotozoários/farmacocinética , Candida albicans/efeitos dos fármacos , Candida albicans/crescimento & desenvolvimento , Linhagem Celular Transformada , Linhagem Celular Tumoral , Composição de Medicamentos , Humanos , Concentração Inibidora 50 , Queratinócitos/efeitos dos fármacos , Queratinócitos/microbiologia , Queratinócitos/parasitologia , Leishmania braziliensis/efeitos dos fármacos , Leishmania braziliensis/crescimento & desenvolvimento , Macrófagos/efeitos dos fármacos , Macrófagos/microbiologia , Macrófagos/parasitologia , Camundongos , Testes de Sensibilidade Microbiana , Tamanho da Partícula , Polissorbatos/química , Pele/efeitos dos fármacos , Pele/microbiologia , Pele/parasitologia , Eletricidade Estática
8.
PLoS One ; 11(3): e0150185, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26934726

RESUMO

Total antigens from Leishmania braziliensis promastigotes, solubilized with sodium cholate (dsLp), were formulated within ultradeformable nanovesicles (dsLp-ultradeformable archaeosomes, (dsLp-UDA), and dsLp-ultradeformable liposomes (dsLp-UDL)) and topically administered to Balb/c mice. Ultradeformable nanovesicles can penetrate the intact stratum corneum up to the viable epidermis, with no aid of classical permeation enhancers that can damage the barrier function of the skin. Briefly, 100 nm unilamellar dsLp-UDA (soybean phosphatidylcholine: Halorubrum tebenquichense total polar lipids (TPL): sodium cholate, 3:3:1 w:w) of -31.45 mV Z potential, containing 4.84 ± 0.53% w/w protein/lipid dsLp, 235 KPa Young modulus were prepared. In vitro, dsLp-UDA was extensively taken up by J774A1 and bone marrow derive cells, and the only that induced an immediate secretion of IL-6, IL-12p40 and TNF-α, followed by IL-1ß, by J774A1 cells. Such extensive uptake is a key feature of UDA ascribed to the highly negatively charged archaeolipids of the TPL, which are recognized by a receptor specialized in uptake and not involved in downstream signaling. Despite dsLp alone was also immunostimulatory on J774A1 cells, applied twice a week on consecutive days along 7 weeks on Balb/c mice, it raised no measurable response unless associated to UDL or UDA. The highest systemic response, IgGa2 mediated, 1 log lower than im dsLp Al2O3, was elicited by dsLp-UDA. Such findings suggest that in vivo, UDL and UDA acted as penetration enhancers for dsLp, but only dsLp-UDA, owed to its pronounced uptake by APC, succeeded as topical adjuvants. The actual TPL composition, fully made of sn2,3 ether linked saturated archaeolipids, gives the UDA bilayer resistance against chemical, physical and enzymatic attacks that destroy ordinary phospholipids bilayers. Together, these properties make UDA a promising platform for topical drug targeted delivery and vaccination, that may be of help for countries with a deficient healthcare system.


Assuntos
Antígenos de Protozoários/imunologia , Leishmania braziliensis/imunologia , Leishmaniose Cutânea/prevenção & controle , Vacinas Protozoárias/administração & dosagem , Vacinação/métodos , Administração Tópica , Animais , Linhagem Celular , Sobrevivência Celular , Módulo de Elasticidade , Halorubrum/química , Humanos , Leishmaniose Cutânea/parasitologia , Lipossomos , Lipídeos de Membrana/química , Camundongos Endogâmicos BALB C
9.
Curr Pharm Des ; 21(20): 2784-800, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25925118

RESUMO

Dendritic nanoparticles have been developed with auspicious properties like high loading capacity for guest molecules, low polydispersity and tunable end groups. Demonstrating increased cellular uptake and bypassed efflux transporters, dendritic nanoparticles may offer new treatment options for therapy-resistant diseases. New core-shell architectures address the drawbacks of initial approaches. Especially tecto-dendrimers, bearing low-radii dendrimers on the surface of a bigger dendrimer, as well as the core-multishell architectures with an alkyl inner shell and a monomethylpoly(ethylene glycol) outer shell, gained interest for dermatotherapy. Moreover, the integration of e.g. pH labile groups into dendritic nanoparticles may offer triggered drug release. However, before declaring dendritic nanoparticles as an ultimate drug delivery system for skin penetration, dendritic nanoparticles need to prove their efficacy and safety in non-clinical, and subsequently in clinical studies. Here, we review major characteristics of human skin, and thus target structures for topical drug delivery systems. Focusing on the use as in vitro test system, we summarize the features of reconstructed human skin. Since drug delivery systems are intended to be applied to diseased skin, we additionally review latest insights into disease-related changes in the highly prevalent skin diseases such as atopic dermatitis, and cutaneous squamous cell carcinoma, as well as in their respective human cell-based skin disease models. We will conclude with the proposal of an integrated test strategy to promote the introduction of dendritic nanoparticles into medicinal products.


Assuntos
Dendrímeros/química , Preparações Farmacêuticas/administração & dosagem , Absorção Cutânea , Pele/metabolismo , Administração Cutânea , Animais , Dendrímeros/farmacocinética , Dermatite Atópica/tratamento farmacológico , Dermatite Atópica/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Humanos , Técnicas In Vitro , Modelos Biológicos , Preparações Farmacêuticas/química , Preparações Farmacêuticas/metabolismo , Pele/anatomia & histologia , Pele/microbiologia , Pele/patologia , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/metabolismo
10.
Colloids Surf B Biointerfaces ; 122: 19-29, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25016541

RESUMO

New therapies are urgently needed against melanoma, one of the most aggressive tumors. Melanoma cells are resistant to the antifolate methotrexate (MTX), since MTX is taken up by the folate receptor-α (FRα), sequestered in melanosomes and exported out of the cell. The bisphosphonate zoledronic acid (ZOL) is active in several non-skeletal tumors; however, its antitumoral activity is hampered by its long-term accumulation in bones and low cellular permeability. Recently, we showed that core-shell tecto-dendrimers made of amine-terminated polyamidoamine generation 5 dendrimer (G5) as core and carboxyl-terminated G2.5 dendrimer as shell (G5G2.5) had selective cytotoxicity to melanoma cells. We hypothesized here that the activity of MTX and ZOL on melanoma cells could be enhanced when loaded within G5G2.5. MTX and ZOL were loaded within G5 cores, which were coated by a covalently bound shell of G2.5 dendrimers (drug-sandwiches). 12nm mean diameter and -12mV Z potential drug-sandwiches incorporating 6 and 31 molecules of MTX and ZOL, respectively, per G5G2.5, showed higher cytotoxicity (by MTT and apoptosis/necrosis assays) to melanoma (Sk-Mel-28) cells than free drugs and G5G2.5. Only MTX-sandwich was cytotoxic to Sk-Mel-28 cells and harmless to keratinocytes (HaCaT cells). The intracellular pathway of G5G2.5 was followed using chemical inhibitors of endocytosis. The increased cytotoxicity of MTX-sandwich could be due to its uptake by macropinocytosis instead of by FRα, avoiding MTX exocytosis. The increased cytotoxicity of ZOL-sandwich could be due to an increased intracellular accumulation of ZOL, owed by its endocytic uptake instead of diffusing as free drug.


Assuntos
Difosfonatos/farmacologia , Imidazóis/farmacologia , Melanoma/patologia , Metotrexato/farmacologia , Polímeros/química , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Difosfonatos/química , Ensaios de Seleção de Medicamentos Antitumorais , Endocitose/efeitos dos fármacos , Humanos , Imidazóis/química , Metotrexato/química , Espectroscopia de Infravermelho com Transformada de Fourier , Ácido Zoledrônico
11.
Int J Nanomedicine ; 9: 3335-45, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25045264

RESUMO

In this work, the in vitro anti-Leishmania activity of photodynamic liposomes made of soybean phosphatidylcholine, sodium cholate, total polar archaeolipids (TPAs) extracted from the hyperhalophile archaea Halorubrum tebenquichense and the photosensitizer zinc phthalocyanine (ZnPcAL) was compared to that of ultradeformable photodynamic liposomes lacking TPAs (ZnPcUDLs). We found that while ZnPcUDLs and ZnPcALs (130 nm mean diameter and -35 mV zeta potential) were innocuous against promastigotes, a low concentration (0.01 µM ZnPc and 7.6 µM phospholipids) of ZnPcALs irradiated at a very low-energy density (0.2 J/cm(2)) eliminated L. braziliensis amastigotes from J774 macrophages, without reducing the viability of the host cells. In such conditions, ZnPcALs were harmless for J774 macrophages, HaCaT keratinocytes, and bone marrow-derived dendritic cells. Therefore, topical photodynamic treatment would not likely affect skin-associated lymphoid tissue. ZnPcALs were extensively captured by macrophages, but ZnPcUDLs were not, leading to 2.5-fold increased intracellular delivery of ZnPc than with ZnPcUDLs. Despite mediating low levels of reactive oxygen species, the higher delivery of ZnPc and the multiple (caveolin- and clathrin-dependent plus phagocytic) intracellular pathway followed by ZnPc would have been the reason for the higher antiamastigote activity of ZnPcALs. The leishmanicidal activity of photodynamic liposomal ZnPc was improved by TPA-containing liposomes.


Assuntos
Antiprotozoários/farmacologia , Éteres de Glicerila/farmacologia , Indóis/farmacologia , Leishmania/efeitos dos fármacos , Leishmania/efeitos da radiação , Lipossomos/farmacologia , Compostos Organometálicos/farmacologia , Animais , Antiprotozoários/química , Antiprotozoários/farmacocinética , Antiprotozoários/toxicidade , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Éteres de Glicerila/química , Éteres de Glicerila/farmacocinética , Éteres de Glicerila/toxicidade , Humanos , Indóis/química , Indóis/farmacocinética , Indóis/toxicidade , Isoindóis , Lipossomos/química , Lipossomos/farmacocinética , Lipossomos/toxicidade , Macrófagos/metabolismo , Camundongos , Compostos Organometálicos/química , Compostos Organometálicos/farmacocinética , Compostos Organometálicos/toxicidade , Espécies Reativas de Oxigênio/análise , Espécies Reativas de Oxigênio/metabolismo , Compostos de Zinco
12.
Int J Nanomedicine ; 7: 4121-33, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22904625

RESUMO

BACKGROUND: The controlled introduction of covalent linkages between dendrimer building blocks leads to polymers of higher architectural order known as tecto-dendrimers. Because of the few simple steps involved in their synthesis, tecto-dendrimers could expand the portfolio of structures beyond commercial dendrimers, due to the absence of synthetic drawbacks (large number of reaction steps, excessive monomer loading, and lengthy chromatographic separations) and structural constraints of high-generation dendrimers (reduction of good monodispersity and ideal dendritic construction due to de Gennes dense-packing phenomenon). However, the biomedical uses of tecto-dendrimers remain unexplored. In this work, after synthesizing saturated shell core-shell tecto-dendrimers using amine-terminated polyamidoamine (PAMAM) generation 5 (G5) as core and carboxyl-terminated PAMAM G2.5 as shell (G5G2.5 tecto-dendrimers), we surveyed for the first time the main features of their interaction with epithelial cells. METHODS: Structural characterization of G5G2.5 was performed by polyacrylamide gel electrophoresis, matrix-assisted laser desorption time-of-flight mass spectrometry, and microscopic techniques; their hydrodynamic size and Z-potential was also determined. Cellular uptake by human epidermal keratinocytes, colon adenocarcinoma, and epidermal melanoma (SK-Mel-28) cells was determined by flow cytometry. Cytotoxicity was determined by mitochondrial activity, lactate dehydrogenase release, glutathione depletion, and apoptosis/necrosis measurement. RESULTS: The resultant 60%-67% saturated shell, 87,000-dalton G5G2.5 (mean molecular weight) interacted with cells in a significantly different fashion in comparison to their building blocks and to its closest counterpart, PAMAM G6.5. After being actively taken up by epithelial cells, G5G2.5 caused cytotoxicity only on SK-Mel-28 cells, including depletion of intracellular glutathione and fast necrosis that was manifested above 5 µM G5G2.5. It cannot be discounted that traces of LiCl within G5G2.5 were involved in such deleterious effects. CONCLUSION: These preliminary results suggest that at concentrations that do not damage healthy keratinocytes, G5G2.5 could display antimelanoma activity.


Assuntos
Dendrímeros/química , Dendrímeros/farmacologia , Melanoma/tratamento farmacológico , Análise de Variância , Apoptose/efeitos dos fármacos , Linhagem Celular Transformada , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Eletroforese em Gel de Poliacrilamida , Citometria de Fluxo , Glutationa/metabolismo , Humanos , Queratinócitos/efeitos dos fármacos , Cinética , Melanoma/patologia , Peso Molecular , Estresse Oxidativo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA