Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Physiol Plant ; 174(1): e13624, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35023171

RESUMO

Increasing atmospheric CO2 concentration is expected to enhance the grain yield of C3 cereal plants, while at the same time reducing the concentrations of minerals and proteins. This will lead to a lower nutritional quality and increase global problems associated with micronutrient malnutrition. Among the barley grain storage proteins, the C-hordein fraction has the lowest abundance of sulfur (S) containing amino acids and is poorest in binding of zinc (Zn). In the present study, C-hordein-suppressed barley lines with reduced C-hordein content, obtained by use of antisense or RNAi technology, were investigated under ambient and elevated atmospheric CO2 concentration. Grains of the C-hordein-suppressed lines showed 50% increase in the concentrations of Zn and iron (Fe) in the core endosperm relative to the wild-type under both ambient and elevated atmospheric CO2 . Element distribution images obtained using laser ablation-inductively coupled plasma-mass spectrometry confirmed the enrichment of Fe and Zn in the core endosperm of the lines with modified storage protein composition. We conclude that modification of grain storage proteins may improve the nutritional value of cereal grain with respect to Zn and Fe under both normal and future conditions of elevated atmospheric CO2 .


Assuntos
Endosperma , Hordeum , Dióxido de Carbono/metabolismo , Grão Comestível/metabolismo , Hordeum/metabolismo , Ferro/metabolismo , Zinco/metabolismo
2.
Physiol Plant ; 174(4): e13761, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36004733

RESUMO

Foliar fertilization delivers essential nutrients directly to plant tissues, reducing excessive soil fertilizer applications that can lead to eutrophication following nutrient leaching. Foliar nutrient absorption is a dynamic process affected by leaf surface structure and composition, plant nutrient status, and ion physicochemical properties. We applied multiple methods to study the foliar absorption behaviors of manganese (Mn) and phosphorus (P) in nutrient-deficient spring barley (Hordeum vulgare) at two growth stages. Nutrient-specific chlorophyll a fluorescence assays were used to visualize leaf nutrient status, while laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) was used to visualize foliar absorption pathways for P and Mn ions. Rapid Mn absorption was facilitated by a relatively thin cuticle with a low abundance of waxes and a higher stomatal density in Mn-deficient plants. Following absorption, Mn accumulated in epidermal cells and in the photosynthetically active mesophyll, enabling a fast (6 h) restoration of Mn-dependent photosynthetic processes. Conversely, P-deficient plants developed thicker cuticles and epidermal cell walls, which reduced the penetration of P across the leaf surface. Foliar-applied P accumulated in trichomes and fiber cells above leaf veins without reaching the mesophyll and, as a consequence, no restoration of P-dependent photosynthetic processes was observed. This study reveals new links between leaf surface morphology, foliar-applied ion absorption pathways, and the restoration of affected physiological processes in nutrient-deficient leaves. Understanding that ions may have different absorption pathways across the leaf surface is critical for the future development of efficient fertilization strategies for crops in nutrient-limited soils.


Assuntos
Hordeum , Manganês , Fósforo , Folhas de Planta , Clorofila A/análise , Hordeum/metabolismo , Íons/metabolismo , Manganês/metabolismo , Nutrientes/análise , Fósforo/metabolismo , Folhas de Planta/metabolismo , Solo
3.
Plant Physiol ; 181(2): 729-742, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31399491

RESUMO

Manganese (Mn) deficiency affects various processes in plant shoots. However, the functions of Mn in roots and the processes involved in root adaptation to Mn deficiency are largely unresolved. Here, we show that the suberization of endodermal cells in barley (Hordeum vulgare) roots is altered in response to Mn deficiency, and that the intensity of Mn deficiency ultimately determines whether suberization increases or decreases. Mild Mn deficiency increased the length of the unsuberized zone close to the root tip, and increased the distance from the root tip at which the fully suberized zone developed. By contrast, strong Mn deficiency increased suberization closer to the root tip. Upon Mn resupply, suberization was identical to that seen on Mn-replete plants. Bioimaging and xylem sap analyses suggest that the reduced suberization in mildly Mn-deficient plants promotes radial Mn transport across the endodermis at a greater distance from the root tip. Less suberin also favors the inwards radial transport of calcium and sodium, but negatively affects the potassium concentration in the stele. During strong Mn deficiency, Mn uptake was directed toward the root tip. Enhanced suberization provides a mechanism to prevent absorbed Mn from leaking out of the stele. With more suberin, the inward radial transport of calcium and sodium decreases, whereas that of potassium increases. We conclude that changes in suberization in response to the intensity of Mn deficiency have a strong effect on root ion homeostasis and ion translocation.


Assuntos
Hordeum/metabolismo , Lipídeos , Manganês/metabolismo , Raízes de Plantas/metabolismo , Homeostase , Hordeum/crescimento & desenvolvimento , Íons/metabolismo , Espectrometria de Massas/métodos
4.
J Exp Bot ; 71(19): 6116-6127, 2020 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-32737981

RESUMO

Manganese (Mn) plays an important role in the oxygen-evolving complex, where energy from light absorption is used for water splitting. Although changes in light intensity and Mn status can interfere with the functionality of the photosynthetic apparatus, the interaction between these two factors and the underlying mechanisms remain largely unknown. Here, maize seedlings were grown hydroponically and exposed to two different light intensities under Mn-sufficient or -deficient conditions. No visual Mn deficiency symptoms appeared even though the foliar Mn concentration in the Mn-deficient treatments was reduced to 2 µg g-1. However, the maximum quantum yield efficiency of PSII and the net photosynthetic rate declined significantly, indicating latent Mn deficiency. The reduction in photosynthetic performance by Mn depletion was further aggravated when plants were exposed to high light intensity. Integrated transcriptomic and proteomic analyses showed that a considerable number of genes encoding proteins in the photosynthetic apparatus were only suppressed by a combination of Mn deficiency and high light, thus indicating interactions between changes in Mn nutritional status and light intensity. We conclude that high light intensity aggravates latent Mn deficiency in maize by interfering with the abundance of PSII proteins.


Assuntos
Manganês , Zea mays , Luz , Fotossíntese , Complexo de Proteína do Fotossistema II/metabolismo , Proteômica , Zea mays/genética , Zea mays/metabolismo
5.
Plant Biotechnol J ; 17(7): 1209-1221, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30525274

RESUMO

Cytosolic glutamine synthetase (GS1) plays a central role in nitrogen (N) metabolism. The importance of GS1 in N remobilization during reproductive growth has been reported in cereal species but attempts to improve N utilization efficiency (NUE) by overexpressing GS1 have yielded inconsistent results. Here, we demonstrate that transformation of barley (Hordeum vulgare L.) plants using a cisgenic strategy to express an extra copy of native HvGS1-1 lead to increased HvGS1.1 expression and GS1 enzyme activity. GS1 overexpressing lines exhibited higher grain yields and NUE than wild-type plants when grown under three different N supplies and two levels of atmospheric CO2 . In contrast with the wild-type, the grain protein concentration in the GS1 overexpressing lines did not decline when plants were exposed to elevated (800-900 µL/L) atmospheric CO2 . We conclude that an increase in GS1 activity obtained through cisgenic overexpression of HvGS1-1 can improve grain yield and NUE in barley. The extra capacity for N assimilation obtained by GS1 overexpression may also provide a means to prevent declining grain protein levels under elevated atmospheric CO2 .


Assuntos
Dióxido de Carbono/química , Glutamato-Amônia Ligase/metabolismo , Proteínas de Grãos/metabolismo , Hordeum/metabolismo , Nitrogênio/metabolismo , Regulação da Expressão Gênica de Plantas , Glutamato-Amônia Ligase/genética , Hordeum/genética , Plantas Geneticamente Modificadas/metabolismo
6.
J Exp Bot ; 70(21): 6461-6473, 2019 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-31504748

RESUMO

Plants have evolved different strategies to utilize various forms of nitrogen (N) from the environment. While regulation of plant growth and development in response to application of inorganic N forms has been characterized, our knowledge about the effect on cell wall structure and composition is quite limited. In this study, we analysed cell walls of Brachypodium distachyon supplied with three types of inorganic N (NH4NO3, NO3-, or NH4+). Cell wall profiles showed distinct alterations in both the quantity and structures of individual polymers. Nitrate stimulated cellulose, but inhibited lignin deposition at the heading growth stage. On the other hand, ammonium supply resulted in higher concentration of mixed linkage glucans. In addition, the chemical structure of pectins and hemicelluloses was strongly influenced by the form of N. Supply of only NO3- led to alteration in xylan substitution and to lower esterification of homogalacturonan. We conclude that the physiological response to absorption of different inorganic N forms includes pleotropic remodelling of type II cell walls.


Assuntos
Brachypodium/metabolismo , Parede Celular/metabolismo , Nitrogênio/farmacologia , Compostos de Amônio/metabolismo , Biomassa , Brachypodium/efeitos dos fármacos , Brachypodium/crescimento & desenvolvimento , Parede Celular/efeitos dos fármacos , Celulose/metabolismo , Epitopos/metabolismo , Esterificação , Glucanos/metabolismo , Lignina/metabolismo , Nitratos/farmacologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/metabolismo
7.
Theor Appl Genet ; 132(12): 3375-3398, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31555887

RESUMO

KEY MESSAGE: This study demonstrates that an active breeding nursery with rotation can be used to identify marker-trait associations for biomass yield and quality parameters that are important for biorefinery purposes. Wheat straw is a valuable feedstock for bioethanol production, but due to the recalcitrant nature of lignocellulose, its efficient use in biorefineries is limited by its low digestibility and difficult conversion of structural carbohydrates into free sugars. A genome-wide association study (GWAS) was conducted to search for significant SNP markers that could be used in a breeding programme to improve the value of wheat straw in a biorefinery setting. As part of a 3-year breeding programme (2013-2016), 190 winter wheat lines were phenotyped for traits that affect the yield and quality of the harvested biomass. These traits included straw yield, plant height, lodging at three growth stages and Septoria tritici blotch (STB) susceptibility. Release of glucose, xylose and arabinose was determined after hydrothermal pretreatment and enzymatic hydrolysis of the straw. The lines were genotyped using 15 K SNP markers and 5552 SNP markers could be used after filtering. Heritability for all traits ranged from 0.02 to 0.74. GWASs were conducted using CMLM, SUPER and FarmCPU algorithms, to analyse which algorithm could detect the highest number of marker-trait associations (MTAs). Comparable tendencies were obtained from CMLM and FarmCPU, but FarmCPU produced the most significant results. MTAs were obtained for lodging, harvest index, plant height, STB, glucose, xylose and arabinose at a significance level of p < 9.01 × 10-6. MTAs in chromosome 6A were observed for glucose, xylose and arabinose, and could be of importance for increasing sugar release for bioethanol production.


Assuntos
Melhoramento Vegetal , Característica Quantitativa Herdável , Triticum/crescimento & desenvolvimento , Triticum/genética , Biomassa , Estudos de Associação Genética , Marcadores Genéticos , Genótipo , Fenótipo , Polimorfismo de Nucleotídeo Único
8.
New Phytol ; 217(4): 1640-1653, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29206303

RESUMO

Transporters involved in manganese (Mn) uptake and intracellular Mn homeostasis in Arabidopsis and rice are well characterized, while much less is known for barley, which is particularly prone to Mn deficiency. In this study we have investigated the role of the iron-regulated transporter 1 (IRT1) for Mn uptake and translocation in barley plants. We employed an RNAi approach to reduce HvIRT1 expression to 5% of the wild-type level. This enabled characterization of the functional role of HvIRT1 by use of advanced imaging and phenotyping techniques applied to plants growing in hydroponics or soils with different Mn availability. Our results highlight the importance of HvIRT1 for the transport of Mn across the root endodermis into the stele. In the hvirt1-RNAi lines, a chlorotic phenotype with reduced shoot Mn concentration and impaired photosynthetic functionality was observed, especially under conditions with low Mn availability. We also document that HvIRT1 controlled the Mn distribution within the barley grain. Surprisingly, unlike other IRT1 orthologues, HvIRT1 played no significant role in iron uptake. We conclude that the barley IRT1 orthologue has a novel function with respect to ensuring sufficient shoot Mn concentrations. The preference of IRT1 for Mn instead of Fe is discussed in an evolutionary context.


Assuntos
Hordeum/metabolismo , Ferro/metabolismo , Manganês/metabolismo , Proteínas de Plantas/metabolismo , Transporte Biológico , Regulação da Expressão Gênica de Plantas , Hordeum/genética , Modelos Biológicos , Fenótipo , Proteínas de Plantas/genética , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , Interferência de RNA , Sementes/metabolismo , Xilema/metabolismo
9.
J Exp Bot ; 69(18): 4469-4481, 2018 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-29931117

RESUMO

Foliar application of zinc (Zn) to crops is an effective way to increase the grain concentration of Zn. However, the development of more efficient foliar Zn fertilizers is limited by a lack of knowledge regarding the distribution, mobility, and speciation of Zn in leaves once it is taken up by the plant. We performed an experiment using radiolabelled Zn (65Zn), and in situ time-resolved elemental imaging using synchrotron X-ray fluorescence microscopy (XFM), to investigate the behaviour of two commonly used Zn foliar fertilizers (Zn sulphate and ZnEDTA) in wheat (Triticum aestivum) leaves. Both experiments showed that Zn had limited mobility in leaves, moving <25 mm from the application point after 24 h. Although limited, the translocation of Zn occurred quickly for both treatments; moving more between 3 h and 12 h after application than between 12 h and 24 h. Speciation analysis using synchrotron-based X-ray absorption near-edge structure (XANES) showed that ZnEDTA was in fact taken up in chelated form and not as ionic Zn (Zn2+). The XANES data also showed that Zn, from both treatments, was then complexed by ligands in the leaf (e.g. phytate and citrate), potentially in response to localized Zn toxicity. The results of the present study provide important insights into the behaviour of commonly used foliar-applied Zn fertilizers, and can be used to optimize current fertilization strategies and contribute to the development of more efficient foliar Zn fertilizers.


Assuntos
Ácido Edético/farmacocinética , Fertilizantes/análise , Folhas de Planta/metabolismo , Triticum/efeitos dos fármacos , Sulfato de Zinco/farmacocinética , Zinco/farmacocinética , Transporte Biológico , Grão Comestível/química , Grão Comestível/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Triticum/metabolismo , Espectroscopia por Absorção de Raios X
10.
Physiol Plant ; 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29855034

RESUMO

This special issue of Physiologia Plantarum has been prepared to publish some of the highlights presented at the XVIII International Plant Nutrition Colloquium (IPNC), which took place during 19-24 August, 2017 in Copenhagen, Denmark. The meeting was organized by University of Copenhagen. Close to 600 participants from more than 50 different countries participated. This article is protected by copyright. All rights reserved.

11.
Physiol Plant ; 163(2): 231-246, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29215732

RESUMO

Silicon (Si) has many beneficial effects in plants, especially for the survival from biotic and abiotic stresses. However, Si may negatively affect the quality of lignocellulosic biomass for bioenergy purposes. Despite many studies, the regulation of Si distribution and deposition in plants remains to be fully understood. Here, we have identified the Brachypodium distachyon mutant low-silicon 1 (Bdlsi1-1), with impaired channeling function of the Si influx transporter BdLSI1, resulting in a substantial reduction of Si in shoots. Bioimaging by laser ablation-inductively coupled plasma-mass spectrometry showed that the wild-type plants deposited Si mainly in the bracts, awns and leaf macrohairs. The Bdlsi1-1 mutants showed substantial (>90%) reduction of Si in the mature shoots. The Bdlsi1-1 leaves had fewer, shorter macrohairs, but the overall pattern of Si distribution in bracts and leaf tissues was similar to that in the wild-type. The Bdlsi1-1 plants supplied with Si had significantly lower seed weights, compared to the wild-type. In low-Si media, the seed weight of wild-type plants was similar to that of Bdlsi1-1 mutants supplied with Si, while the Bdlsi1-1 seed weight decreased further. We conclude that Si deficiency results in widespread alterations in leaf surface morphology and seed formation in Brachypodium, showing the importance of Si for successful development in grasses.


Assuntos
Brachypodium/efeitos dos fármacos , Proteínas de Membrana Transportadoras/metabolismo , Silício/farmacologia , Brachypodium/crescimento & desenvolvimento , Proteínas de Membrana Transportadoras/genética , Mutação , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento
12.
Plant Physiol ; 171(3): 1921-33, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27231101

RESUMO

Cytosolic GS1 (Gln synthetase) is central for ammonium assimilation in plants. High ammonium treatment enhanced the expression of the GS1 isogene Gln-1;2 encoding a low-affinity high-capacity GS1 protein in Arabidopsis (Arabidopsis thaliana) shoots. Under the same conditions, the expression of the high-affinity low-capacity isoform Gln-1;1 was reduced. The expression of Gln-1;3 did not respond to ammonium treatment while Gln-1;4 and Gln-1;5 isogenes in all cases were expressed at a very low level. Gln-2 was highly expressed in shoots but only at a very low level in roots. To investigate the specific functions of the two isogenes Gln-1;1 and Gln-1;2 in shoots for ammonium detoxification, single and double knock-out mutants were grown under standard N supply or with high ammonium provision. Phenotypes of the single mutant gln1;1 were similar to the wild type, while growth of the gln1;2 single mutant and the gln1;1:gln1;2 double mutant was significantly impaired irrespective of N regime. GS1 activity was significantly reduced in both gln1;2 and gln1;1:gln1;2 Along with this, the ammonium content increased while that of Gln decreased, showing that Gln-1;2 was essential for ammonium assimilation and amino acid synthesis. We conclude that Gln-1;2 is the main isozyme contributing to shoot GS1 activity in vegetative growth stages and can be up-regulated to relieve ammonium toxicity. This reveals, to our knowledge, a novel shoot function of Gln-1;2 in Arabidopsis shoots.


Assuntos
Compostos de Amônio/toxicidade , Proteínas de Arabidopsis/metabolismo , Arabidopsis/efeitos dos fármacos , Glutamato-Amônia Ligase/metabolismo , Aminoácidos/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Citosol/enzimologia , Regulação da Expressão Gênica de Plantas , Glutamato-Amônia Ligase/genética , Inativação Metabólica , Isoenzimas/genética , Isoenzimas/metabolismo , Mutação , Nitrogênio/metabolismo , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/fisiologia , Plantas Geneticamente Modificadas , Regulação para Cima/efeitos dos fármacos
13.
Plant Physiol ; 172(2): 835-847, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27566167

RESUMO

Better understanding of root function is central for the development of plants with more efficient nutrient uptake and translocation. We here present a method for multielement bioimaging at the cellular level in roots of the genetic model system Arabidopsis (Arabidopsis thaliana). Using conventional protocols for microscopy, we observed that diffusible ions such as potassium and sodium were lost during sample dehydration. Thus, we developed a protocol that preserves ions in their native, cellular environment. Briefly, fresh roots are encapsulated in paraffin, cryo-sectioned, and freeze dried. Samples are finally analyzed by laser ablation-inductively coupled plasma-mass spectrometry, utilizing a specially designed internal standard procedure. The method can be further developed to maintain the native composition of proteins, enzymes, RNA, and DNA, making it attractive in combination with other omics techniques. To demonstrate the potential of the method, we analyzed a mutant of Arabidopsis unable to synthesize the metal chelator nicotianamine. The mutant accumulated substantially more zinc and manganese than the wild type in the tissues surrounding the vascular cylinder. For iron, the images looked completely different, with iron bound mainly in the epidermis of the wild-type plants but confined to the cortical cell walls of the mutant. The method offers the power of inductively coupled plasma-mass spectrometry to be fully employed, thereby providing a basis for detailed studies of ion transport in roots. Being applicable to Arabidopsis, the molecular and genetic approaches available in this system can now be fully exploited in order to gain a better mechanistic understanding of these processes.


Assuntos
Arabidopsis/metabolismo , Espectrometria de Massas/métodos , Raízes de Plantas/metabolismo , Xilema/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transporte de Íons/genética , Ferro/metabolismo , Manganês/metabolismo , Mutação , Ácidos Nucleicos/metabolismo , Raízes de Plantas/genética , Reprodutibilidade dos Testes , Xilema/genética , Zinco/metabolismo
14.
Plant Physiol ; 170(3): 1640-54, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26802038

RESUMO

Aquaporins (AQPs) are water channels allowing fast and passive diffusion of water across cell membranes. It was hypothesized that AQPs contribute to cell elongation processes by allowing water influx across the plasma membrane and the tonoplast to maintain adequate turgor pressure. Here, we report that, in Arabidopsis (Arabidopsis thaliana), the highly abundant tonoplast AQP isoforms AtTIP1;1, AtTIP1;2, and AtTIP2;1 facilitate the emergence of new lateral root primordia (LRPs). The number of lateral roots was strongly reduced in the triple tip mutant, whereas the single, double, and triple tip mutants showed no or minor reduction in growth of the main root. This phenotype was due to the retardation of LRP emergence. Live cell imaging revealed that tight spatiotemporal control of TIP abundance in the tonoplast of the different LRP cells is pivotal to mediating this developmental process. While lateral root emergence is correlated to a reduction of AtTIP1;1 and AtTIP1;2 protein levels in LRPs, expression of AtTIP2;1 is specifically needed in a restricted cell population at the base, then later at the flanks, of developing LRPs. Interestingly, the LRP emergence phenotype of the triple tip mutants could be fully rescued by expressing AtTIP2;1 under its native promoter. We conclude that TIP isoforms allow the spatial and temporal fine-tuning of cellular water transport, which is critically required during the highly regulated process of LRP morphogenesis and emergence.


Assuntos
Aquaporinas/metabolismo , Proteínas de Arabidopsis/metabolismo , Raízes de Plantas/metabolismo , Vacúolos/metabolismo , Aquaporinas/genética , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Transporte Biológico/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Meristema/genética , Meristema/crescimento & desenvolvimento , Meristema/metabolismo , Microscopia Confocal , Mutação , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Vacúolos/genética , Água/metabolismo
15.
New Phytol ; 211(4): 1255-65, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27159614

RESUMO

Low concentration of zinc (Zn) in the endosperm of cereals is a major factor contributing to Zn deficiency in human populations. We have investigated how combined Zn and nitrogen (N) fertilization affects the speciation and localization of Zn in durum wheat (Triticum durum). Zn-binding proteins were analysed with liquid chromatography ICP-MS and Orbitrap MS(2) , respectively. Laser ablation ICP-MS with simultaneous Zn, sulphur (S) and phosphorus (P) detection was used for bioimaging of Zn and its potential ligands. Increasing the Zn and N supply had a major impact on the Zn concentration in the endosperm, reaching concentrations higher than current breeding targets. The S concentration also increased, but S was only partly co-localized with Zn. The mutual Zn and S enrichment was reflected in substantially more Zn bound to small cysteine-rich proteins (apparent size 10-30 kDa), whereas the response of larger proteins (apparent size > 50 kDa) was only modest. Most of the Zn-responsive proteins were associated with redox- and stress-related processes. This study offers a methodological platform to deepen the understanding of processes behind endosperm Zn enrichment. Novel information is provided on how the localization and speciation of Zn is modified during Zn biofortification of grains.


Assuntos
Estado Nutricional , Sementes/metabolismo , Triticum/metabolismo , Zinco/metabolismo , Endosperma/metabolismo , Espectrometria de Massas , Nitrogênio/metabolismo , Especificidade de Órgãos , Proteínas de Plantas/metabolismo , Enxofre/metabolismo
16.
Plant Physiol ; 168(4): 1490-502, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26084923

RESUMO

Metals exert important functions in the chloroplast of plants, where they act as cofactors and catalysts in the photosynthetic electron transport chain. In particular, manganese (Mn) has a key function because of its indispensable role in the water-splitting reaction of photosystem II (PSII). More and better knowledge is required on how the various complexes of PSII are affected in response to, for example, nutritional disorders and other environmental stress conditions. We here present, to our knowledge, a new method that allows the analysis of metal binding in intact photosynthetic complexes of barley (Hordeum vulgare) thylakoids. The method is based on size exclusion chromatography coupled to inductively coupled plasma triple-quadrupole mass spectrometry. Proper fractionation of PSII super- and subcomplexes was achieved by critical selection of elution buffers, detergents for protein solubilization, and stabilizers to maintain complex integrity. The applicability of the method was shown by quantification of Mn binding in PSII from thylakoids of two barley genotypes with contrasting Mn efficiency exposed to increasing levels of Mn deficiency. The amount of PSII supercomplexes was drastically reduced in response to Mn deficiency. The Mn efficient genotype bound significantly more Mn per unit of PSII under control and mild Mn deficiency conditions than the inefficient genotype, despite having lower or similar total leaf Mn concentrations. It is concluded that the new method facilitates studies of the internal use of Mn and other biometals in various PSII complexes as well as their relative dynamics according to changes in environmental conditions.


Assuntos
Hordeum/metabolismo , Metais/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Tilacoides/metabolismo , Western Blotting , Cálcio/metabolismo , Cromatografia em Gel , Genótipo , Hordeum/genética , Ferro/metabolismo , Manganês/metabolismo , Espectrometria de Massas , Fotossíntese , Complexo de Proteína do Fotossistema I/genética , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/genética , Folhas de Planta/genética , Folhas de Planta/metabolismo , Ligação Proteica , Proteoma/metabolismo , Proteômica/métodos , Tilacoides/genética
17.
Plant Physiol ; 169(1): 353-61, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26162430

RESUMO

Phosphorus (P) is a finite natural resource and an essential plant macronutrient with major impact on crop productivity and global food security. Here, we demonstrate that time-resolved chlorophyll a fluorescence is a unique tool to monitor bioactive P in plants and can be used to detect latent P deficiency. When plants suffer from P deficiency, the shape of the time-dependent fluorescence transients is altered distinctively, as the so-called I step gradually straightens and eventually disappears. This effect is shown to be fully reversible, as P resupply leads to a rapid restoration of the I step. The fading I step suggests that the electron transport at photosystem I (PSI) is affected in P-deficient plants. This is corroborated by the observation that differences at the I step in chlorophyll a fluorescence transients from healthy and P-deficient plants can be completely eliminated through prior reduction of PSI by far-red illumination. Moreover, it is observed that the barley (Hordeum vulgare) mutant Viridis-zb(63), which is devoid of PSI activity, similarly does not display the I step. Among the essential plant nutrients, the effect of P deficiency is shown to be specific and sufficiently sensitive to enable rapid in situ determination of latent P deficiency across different plant species, thereby providing a unique tool for timely remediation of P deficiency in agriculture.


Assuntos
Clorofila/metabolismo , Fósforo/deficiência , Clorofila A , Fluorescência , Hordeum/metabolismo , Hidroponia , Análise dos Mínimos Quadrados , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Análise de Componente Principal
18.
Ann Bot ; 118(2): 271-80, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27371693

RESUMO

BACKGROUND AND AIMS: Retranslocation of iron (Fe) from source tissues enhances plant tolerance to Fe deficiency. Previous work has shown that silicon (Si) can alleviate Fe deficiency by enhancing acquisition and root to shoot translocation of Fe. Here the role of Si in Fe mobilization in older leaves and the subsequent retranslocation of Fe to young leaves of cucumber (Cucumis sativus) plants growing under Fe-limiting conditions was investigated. METHODS: Iron ((57)Fe or naturally occurring isotopes) was measured in leaves at different positions on plants hydroponically growing with or without Si supply. In parallel, the concentration of the Fe chelator nicotianamine (NA) along with the expression of nicotianamine synthase (NAS) involved in its biosynthesis and the expression of yellow stripe-like (YSL) transcripts mediating Fe-NA transport were also determined. KEY RESULTS: In plants not receiving Si, approximately half of the total Fe content remained in the oldest leaf. In contrast, Si-treated plants showed an almost even Fe distribution among leaves with four different developmental stages, thus providing evidence of enhanced Fe remobilization from source leaves. This Si-stimulated Fe export was paralleled by an increased NA accumulation and expression of the YSL1 transporter for phloem loading/unloading of the Fe-NA complex. CONCLUSIONS: The results suggest that Si enhances remobilization of Fe from older to younger leaves by a more efficient NA-mediated Fe transport via the phloem. In addition, from this and previous work, a model is proposed of how Si acts to improve Fe homeostasis under Fe deficiency in cucumber.


Assuntos
Alquil e Aril Transferases/metabolismo , Cucumis sativus/efeitos dos fármacos , Deficiências de Ferro , Silício/farmacologia , Alquil e Aril Transferases/genética , Ácido Azetidinocarboxílico/análogos & derivados , Ácido Azetidinocarboxílico/metabolismo , Transporte Biológico , Cucumis sativus/metabolismo , Homeostase , Hidroponia , Modelos Biológicos , Floema/efeitos dos fármacos , Floema/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
19.
New Phytol ; 206(2): 738-50, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25545296

RESUMO

Elevated nicotianamine synthesis in roots of Arabidopsis halleri has been established as a zinc (Zn) hyperaccumulation factor. The main objective of this study was to elucidate the mechanism of nicotianamine-dependent root-to-shoot translocation of metals. Metal tolerance and accumulation in wild-type (WT) and AhNAS2-RNA interference (RNAi) plants were analysed. Xylem exudates were subjected to speciation analysis and metabolite profiling. Suppression of root nicotianamine synthesis had no effect on Zn and cadmium (Cd) tolerance but rendered plants nickel (Ni)-hypersensitive. It also led to a reduction of Zn root-to-shoot translocation, yet had the opposite effect on Ni mobility, even though both metals form coordination complexes of similar stability with nicotianamine. Xylem Zn concentrations were positively, yet nonstoichiometrically, correlated with nicotianamine concentrations. Two fractions containing Zn coordination complexes were detected in WT xylem. One of them was strongly reduced in AhNAS2-suppressed plants and coeluted with (67) Zn-labelled organic acid complexes. Organic acid concentrations were not responsive to nicotianamine concentrations and sufficiently high to account for complexing the coordinated Zn. We propose a key role for nicotianamine in controlling the efficiency of Zn xylem loading and thereby the formation of Zn coordination complexes with organic acids, which are the main Zn ligands in the xylem but are not rate-limiting for Zn translocation.


Assuntos
Alquil e Aril Transferases/genética , Arabidopsis/enzimologia , Cádmio/metabolismo , Níquel/farmacologia , Zinco/farmacologia , Alquil e Aril Transferases/metabolismo , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ácido Azetidinocarboxílico/análogos & derivados , Ácido Azetidinocarboxílico/metabolismo , Ácidos Carboxílicos/metabolismo , Tolerância a Medicamentos , Regulação da Expressão Gênica de Plantas , Técnicas de Silenciamento de Genes , Especiação Genética , Níquel/metabolismo , Raízes de Plantas/enzimologia , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Xilema/enzimologia , Xilema/genética , Xilema/fisiologia , Zinco/metabolismo
20.
Plant Cell ; 24(2): 708-23, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22374395

RESUMO

Zn deficiency is among the leading health risk factors in developing countries. Breeding of Zn-enriched crops is expected to be facilitated by molecular dissection of plant Zn hyperaccumulation (i.e., the ability of certain plants to accumulate Zn to levels >100-fold higher than normal plants). The model hyperaccumulators Arabidopsis halleri and Noccaea caerulescens share elevated nicotianamine synthase (NAS) expression relative to nonaccumulators among a core of alterations in metal homeostasis. Suppression of Ah-NAS2 by RNA interference (RNAi) resulted in strongly reduced root nicotianamine (NA) accumulation and a concomitant decrease in root-to-shoot translocation of Zn. Speciation analysis by size-exclusion chromatography coupled to inductively coupled plasma mass spectrometry showed that the dominating Zn ligands in roots were NA and thiols. In NAS2-RNAi plants, a marked increase in Zn-thiol species was observed. Wild-type A. halleri plants cultivated on their native soil showed elemental profiles very similar to those found in field samples. Leaf Zn concentrations in NAS2-RNAi lines, however, did not reach the Zn hyperaccumulation threshold. Leaf Cd accumulation was also significantly reduced. These results demonstrate a role for NAS2 in Zn hyperaccumulation also under near-natural conditions. We propose that NA forms complexes with Zn(II) in root cells and facilitates symplastic passage of Zn(II) toward the xylem.


Assuntos
Alquil e Aril Transferases/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Ácido Azetidinocarboxílico/análogos & derivados , Raízes de Plantas/metabolismo , Zinco/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Ácido Azetidinocarboxílico/metabolismo , Regulação da Expressão Gênica de Plantas , Técnicas de Silenciamento de Genes , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/genética , Interferência de RNA , Solo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA