Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-35270223

RESUMO

Denmark has one of the highest Legionnaires' disease notification rates within Europe, averaging 4.7 cases per 100,000 population annually (2017 to 2020). The relatively high incidence of disease is not uniform across the country, and approximately 70% of all domestically acquired cases in Denmark are caused by Legionella pneumophila (LP) strains that are considered less virulent. The aim of this study was to investigate if colonization rates, levels of colonization, and/or types of LP present in hot water systems were associated with geographic differences in Legionnaires' disease incidence. Domestic water systems from four cities in Denmark were analyzed via culture and qPCR. Serogrouping and sequence typing was performed on randomly selected isolates. Single nucleotide polymorphism was used to identify clonal relationship among isolates from the four cities. The results revealed a high LP colonization rate from 68% to 87.5% among systems, composed primarily of non-serogroup 1. LP serogroup 1 reacting with the monoclonal antibody (MAb) 3/1 was not identified in any of the systems tested, while MAb 3/1 negative serogroup 1 strains were isolated from 10 systems (9.6%). We hypothesize that a combination of factors influences the incidence rate of LD in each city, including sequence type and serogroup distribution, colonization rate, concentration of Legionella in Pre-flush and Flush samples, and potentially building characteristics such as water temperature measured at the point of use.


Assuntos
Legionella pneumophila , Doença dos Legionários , Cidades/epidemiologia , Dinamarca/epidemiologia , Humanos , Incidência , Doença dos Legionários/epidemiologia , Água , Microbiologia da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA