Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
EMBO J ; 38(10)2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30944096

RESUMO

Astrocytes are critical regulators of neuroinflammation in multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis (EAE). Growing evidence indicates that ubiquitination of signaling molecules is an important cell-intrinsic mechanism governing astrocyte function during MS and EAE Here, we identified an upregulation of the deubiquitinase OTU domain, ubiquitin aldehyde binding 1 (OTUB1) in astrocytes during MS and EAE Mice with astrocyte-specific OTUB1 ablation developed more severe EAE due to increased leukocyte accumulation, proinflammatory gene transcription, and demyelination in the spinal cord as compared to control mice. OTUB1-deficient astrocytes were hyperactivated in response to IFN-γ, a fingerprint cytokine of encephalitogenic T cells, and produced more proinflammatory cytokines and chemokines than control astrocytes. Mechanistically, OTUB1 inhibited IFN-γ-induced Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling by K48 deubiquitination and stabilization of the JAK2 inhibitor suppressor of cytokine signaling 1 (SOCS1). Thus, astrocyte-specific OTUB1 is a critical inhibitor of neuroinflammation in CNS autoimmunity.


Assuntos
Astrócitos/imunologia , Astrócitos/patologia , Autoimunidade/genética , Cisteína Endopeptidases/fisiologia , Interferon gama/fisiologia , Inflamação Neurogênica/genética , Animais , Animais Recém-Nascidos , Astrócitos/metabolismo , Células Cultivadas , Sistema Nervoso Central/imunologia , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/patologia , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/patologia , Feminino , Interferon gama/antagonistas & inibidores , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Inflamação Neurogênica/patologia , Neuroimunomodulação/genética
2.
Mol Psychiatry ; 27(1): 259-268, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34285347

RESUMO

Neurodegenerative diseases (NDs) are characterized by the aggregation of neurotoxic proteins in the central nervous system. Aberrant protein accumulation in NDs is largely caused by the dysfunction of the two principal protein catabolism pathways, the ubiquitin-proteasome system (UPS), and the autophagy-lysosomal pathway (ALP). The two protein quality control pathways are bridged by ubiquitination, a post-translational modification that can induce protein degradation via both the UPS and the ALP. Perturbed ubiquitination leads to the formation of toxic aggregates and inclusion bodies that are deleterious to neurons. Ubiquitination is promoted by a cascade of ubiquitinating enzymes and counter-regulated by deubiquitinating enzymes (DUBs). As fine-tuning regulators of ubiquitination and protein degradation, DUBs modulate the stability of ND-associated pathogenic proteins including amyloid ß protein, Tau, and α-synuclein. Besides, DUBs also influence ND-associated mitophagy, protein secretion, and neuroinflammation. Given the various and critical functions of DUBs in NDs, DUBs may become potential therapeutic targets for NDs.


Assuntos
Doenças Neurodegenerativas , Peptídeos beta-Amiloides/metabolismo , Enzimas Desubiquitinantes/genética , Enzimas Desubiquitinantes/metabolismo , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo , Ubiquitinação
3.
J Antimicrob Chemother ; 77(5): 1247-1253, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35257174

RESUMO

OBJECTIVES: To identify novel carbapenem resistance mechanisms and their potential to spread among clinical isolates. METHODS: Four clinical isolates of Citrobacter freundii, Serratia marcescens and Raoultella planticola (n = 2) from one hospital in Central Germany were sent to the German National Reference Centre for Multidrug-resistant Gram-negative Bacteria for carbapenemase detection. Phenotypic tests indicated the presence of a metallo-ß-lactamase (MBL), but PCR for various MBL genes could not identify any. Using WGS data, a putative bla gene was identified. Its carbapenemase activity was verified by heterologous expression in an Escherichia coli cloning strain, with subsequent MIC determination by broth microdilution, as well as by in vitro hydrolysis assays using purified enzyme. RESULTS: WGS indicated the presence of a putative ß-lactamase with 48% amino acid identity to the subclass B1 MBL SPM-1. MIC studies confirmed that the novel enzyme formed a functional MBL, which was therefore designated as GMB-1 (German MBL). In vitro hydrolysis assays showed a lack of activity not only against aztreonam but also against ertapenem. WGS revealed that in all three species the blaGMB-1 gene was located on the chromosome as part of a genetic island with multiple ISs. CONCLUSIONS: The finding of GMB-1 once again shows that novel carbapenemases continue to emerge and make their way into clinically relevant species. The occurrence of GMB-1 in three different species demonstrates the extraordinary mobility of such genetic islands and their potential to spread carbapenemase genes into diverse genetic environments.


Assuntos
Antibacterianos , beta-Lactamases , Antibacterianos/farmacologia , Aztreonam , Escherichia coli , Testes de Sensibilidade Microbiana , beta-Lactamases/metabolismo
4.
PLoS Pathog ; 16(3): e1008448, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32208465

RESUMO

The composition of the intestinal microbiota influences the outcome of enteric infections in human and mice. However, the role of specific members and their metabolites contributing to disease severity is largely unknown. Using isogenic mouse lines harboring distinct microbiota communities, we observed highly variable disease kinetics of enteric Citrobacter rodentium colonization after infection. Transfer of communities from susceptible and resistant mice into germ-free mice verified that the varying susceptibilities are determined by microbiota composition. The strongest differences in colonization were observed in the cecum and could be maintained in vitro by coculturing cecal bacteria with C. rodentium. Cohousing of animals as well as the transfer of cultivable bacteria from resistant to susceptible mice led to variable outcomes in the recipient mice. Microbiome analysis revealed that a higher abundance of butyrate-producing bacteria was associated with the resistant phenotype. Quantification of short-chain fatty acid (SCFA) levels before and after infection revealed increased concentrations of acetate, butyrate and propionate in mice with delayed colonization. Addition of physiological concentrations of butyrate, but not of acetate and/or propionate strongly impaired growth of C. rodentium in vitro. In vivo supplementation of susceptible, antibiotic-treated and germ-free mice with butyrate led to the same level of protection, notably only when cecal butyrate concentration reached a concentration higher than 50 nmol/mg indicating a critical threshold for protection. In the recent years, commensal-derived primary and secondary bacterial metabolites emerged as potent modulators of hosts susceptibility to infection. Our results provide evidence that variations in SCFA production in mice fed fibre-rich chow-based diets modulate susceptibility to colonization with Enterobacteriaceae not only in antibiotic-disturbed ecosystems but even in undisturbed microbial communities. These findings emphasise the need for microbiota normalization across laboratory mouse lines for infection experiments with the model-pathogen C. rodentium independent of investigations of diet and antibiotic usage.


Assuntos
Citrobacter rodentium/crescimento & desenvolvimento , Infecções por Enterobacteriaceae/metabolismo , Ácidos Graxos/metabolismo , Microbioma Gastrointestinal , Animais , Camundongos
5.
Mol Ther ; 29(6): 1946-1957, 2021 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-33895328

RESUMO

Extracellular vesicles (EVs) are bilayer membrane vesicles and act as key messengers in intercellular communication. EVs can be secreted by both neurons and glial cells in the central nervous system (CNS). Under physiological conditions, EVs contribute to CNS homeostasis by facilitating omnidirectional communication among CNS cell populations. In response to CNS injury, EVs mediate neuroinflammatory responses and regulate tissue damage and repair, thereby influencing the pathogenesis, development, and/or recovery of neuroinflammatory diseases, including CNS autoimmune diseases, neurodegenerative diseases, stroke, CNS traumatic injury, and CNS infectious diseases. The unique ability of EVs to pass through the blood-brain barrier further confers them an important role in the bidirectional communication between the CNS and periphery, and application of EVs enables the diagnosis, prognosis, and therapy of neuroinflammatory diseases in a minimally invasive manner.


Assuntos
Vesículas Extracelulares/metabolismo , Doenças Neuroinflamatórias/diagnóstico , Doenças Neuroinflamatórias/etiologia , Doenças Neuroinflamatórias/terapia , Animais , Autoimunidade , Biomarcadores , Gerenciamento Clínico , Suscetibilidade a Doenças , Interações Hospedeiro-Patógeno , Humanos
6.
BMC Infect Dis ; 21(1): 1196, 2021 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-34837973

RESUMO

BACKGROUND: Carbapenem resistant (CR) Klebsiella pneumoniae (Kp) and Acinetobacter baumannii (Ab) are emerging multidrug resistant bacteria with very limited treatment options in case of infection. Both are well-known causes of nosocomial infections and outbreaks in healthcare facilities. METHODS: A retrospective study was conducted to investigate the epidemiology of inpatients with CR Kp and CR Ab in a 1500-bed German university hospital from 2015 to 2019. We present our infection control concept including a weekly microbiologic screening for patients who shared the ward with a CR Kp or CR Ab index patient. RESULTS: Within 5 years, 141 CR Kp and 60 CR Ab cases were hospitalized corresponding to 118 unique patients (74 patients with CR Kp, 39 patients with CR Ab and 5 patients with both CR Ab and CR Kp). The mean incidence was 0.045 (CR Kp) and 0.019 (CR Ab) per 100 inpatient cases, respectively. Nosocomial acquisition occurred in 53 cases (37.6%) of the CR Kp group and in 12 cases (20.0%) of the CR Ab group. Clinical infection occurred in 24 cases (17.0%) of the CR Kp group and in 21 cases (35.0%) of the CR Ab group. 14 cases (9.9%) of the CR Kp group and 29 cases (48.3%) of the CR Ab group had a history of a hospital stay abroad within 12 months prior to admission to our hospital. The weekly microbiologic screening revealed 4 CR Kp cases caused by nosocomial transmission that would have been missed without repetitive screening. CONCLUSIONS: CR Kp and CR Ab cases occurred infrequently. A history of a hospital stay abroad, particularly in the CR Ab group, warrants pre-emptive infection control measures. The weekly microbiologic screening needs further evaluation in terms of its efficiency.


Assuntos
Acinetobacter baumannii , Infecções por Klebsiella , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Carbapenêmicos/farmacologia , Carbapenêmicos/uso terapêutico , Hospitais Universitários , Humanos , Controle de Infecções , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/epidemiologia , Klebsiella pneumoniae , Estudos Retrospectivos
7.
J Neuroinflammation ; 17(1): 102, 2020 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-32248814

RESUMO

Multiple sclerosis (MS) is the most common autoimmune disease of the CNS. The etiology of MS is still unclear but it is widely recognized that both genetic and environmental factors contribute to its pathogenesis. Immune signaling and responses are critically regulated by ubiquitination, a posttranslational modification that is promoted by ubiquitinating enzymes and inhibited by deubiquitinating enzymes (DUBs). Genome-wide association studies (GWASs) identified that polymorphisms in or in the vicinity of two human DUB genes TNFAIP3 and USP18 were associated with MS susceptibility. Studies with experimental autoimmune encephalomyelitis (EAE), an animal model of MS, have provided biological rationale for the correlation between these DUBs and MS. Additional studies have shown that other DUBs are also involved in EAE by controlling distinct cell populations. Therefore, DUBs are emerging as crucial regulators of MS/EAE and might become potential therapeutic targets for the clinical treatment of MS.


Assuntos
Autoimunidade/imunologia , Enzimas Desubiquitinantes/metabolismo , Encefalomielite Autoimune Experimental/enzimologia , Esclerose Múltipla/enzimologia , Animais , Encefalomielite Autoimune Experimental/imunologia , Humanos , Esclerose Múltipla/imunologia
8.
Am J Pathol ; 189(3): 540-551, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30593823

RESUMO

Inflammatory bowel diseases frequently cause gastrointestinal dysmotility, suggesting that they may also affect the enteric nervous system. So far, the precise mechanisms that lead to gastrointestinal dysmotility in inflammatory bowel diseases have not been elucidated. To determine the effect of CD8 T cells on gastrointestinal motility, transgenic mice expressing ovalbumin on enteric neurons were generated. In these mice, adoptive transfer of ovalbumin-specific OT-I CD8 T cells induced severe enteric ganglionitis. CD8 T cells homed to submucosal and myenteric plexus neurons, 60% of which were lost, clinically resulting in severely impaired gastrointestinal transition. Anti-interferon-γ treatment rescued neurons by preventing their up-regulation of major histocompatibility complex class I antigen, thus preserving gut motility. These preclinical murine data translated well into human gastrointestinal dysmotility. In a series of 30 colonic biopsy specimens from patients with gastrointestinal dysmotility, CD8 T cell-mediated ganglionitis was detected that was followed by severe loss of enteric neurons (74.8%). Together, the preclinical and clinical data support the concept that autoimmune CD8 T cells play an important pathogenetic role in gastrointestinal dysmotility and may destroy enteric neurons.


Assuntos
Doenças Autoimunes/imunologia , Linfócitos T CD8-Positivos/imunologia , Motilidade Gastrointestinal/imunologia , Doenças Inflamatórias Intestinais/imunologia , Plexo Mientérico/imunologia , Animais , Doenças Autoimunes/genética , Doenças Autoimunes/patologia , Linfócitos T CD8-Positivos/patologia , Motilidade Gastrointestinal/genética , Humanos , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/patologia , Camundongos , Camundongos Transgênicos , Plexo Mientérico/patologia
9.
Chemistry ; 26(6): 1335-1343, 2020 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-31721322

RESUMO

Derivatives of 1,2-dithienylethene (DTE) have superb photochromic properties due to an efficient reversible photocyclization reaction of their hexatriene structure and, thus, have application potential in materials for optoelectronics and (multi-responsive) molecular switches. Transition-metal complexes bearing switchable DTE motifs commonly incorporate their coordination site rather distant from the hexatriene system. In this work the redox active ligand 1,2-bis(2,5-dimethylthiophen-3-yl)ethane-1,2-dione is described, which reacts with [V(TMEDA)2 Cl2 ] to give a rare non-oxido vanadium(IV) species 3(M,M/P,P). This blue complex has two bidentate en-diolato ligands which chelate the VIV center and give rise to two five-membered metallacycles with the adjacent hexatriene DTE backbone bearing axial chirality. Upon irradiation with UVA light or prolonged heating in solution, the blue compound 3(M,M/P,P) converts into the purple atropisomer 4(para,M/para,P). Both complexes were isolated and structurally characterized by single-crystal X-ray diffraction analysis (using lab source and synchrotron radiation). The antiparallel configuration (M or P helicity) present in both 3(M,M/P,P) and 4(para,M/para,P) is a prerequisite for (reversible) 6π cyclization reactions. A CW EPR spectroscopic study reveals the metalloradical character for 3(M,M/P,P) and 4(para,M/para,P) and indicates dynamic reversible cyclization of the DTE backbone in complex 3(M,M/P,P) at ambient temperature in solution.

10.
Brain Behav Immun ; 80: 10-24, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31125711

RESUMO

Neuropathology in the human autoimmune disease multiple sclerosis (MS) is considered to be mediated by autoreactive leukocytes, such as T cells, B cells, and macrophages. However, the inflammation and tissue damage in MS and its animal model experimental autoimmune encephalomyelitis (EAE) is also critically regulated by astrocytes, the most abundant cell population in the central nervous system (CNS). Under physiological conditions, astrocytes are integral to the development and function of the CNS, whereas in CNS autoimmunity, astrocytes influence the pathogenesis, progression, and recovery of the diseases. In this review, we summarize recent advances in astrocytic functions in the context of MS and EAE, which are categorized into two opposite aspects, one being detrimental and the other beneficial. Inhibition of the detrimental functions and/or enhancement of the beneficial functions of astrocytes might be favorable for the treatment of MS.


Assuntos
Astrócitos/imunologia , Encefalomielite Autoimune Experimental/imunologia , Esclerose Múltipla/imunologia , Animais , Astrócitos/metabolismo , Autoimunidade/imunologia , Linfócitos B/imunologia , Sistema Nervoso Central/imunologia , Encefalomielite Autoimune Experimental/metabolismo , Humanos , Inflamação/imunologia , Esclerose Múltipla/metabolismo , Neuroimunomodulação/imunologia , Neuroimunomodulação/fisiologia , Medula Espinal/imunologia , Medula Espinal/patologia , Linfócitos T/imunologia
11.
Nervenarzt ; 90(6): 623-641, 2019 Jun.
Artigo em Alemão | MEDLINE | ID: mdl-31073673

RESUMO

A plethora of different parasites and fungi can lead to infections of the central nervous system (CNS) and cause different clinical symptoms and outcomes depending on the pathogen and the anatomic location of the infection. The diagnosis and treatment of these eukaryotic infections is challenging. The prevalence of CNS infections depends on many factors, including geographical location, living conditions, genetic background and the immune status of the individual. In Germany, infections of the CNS by fungi and parasites are rare but can lead to considerable morbidity. Some parasitic and fungal CNS infections are becoming increasingly more prevalent and clinically relevant due to the increasing number of immunocompromised people. Case fatality rates of these infections, which are difficult to diagnose and to treat, are high. This article provides an overview of a subjective selection of parasitic and fungal infections of the CNS relevant to clinical practice in Germany and presents the diagnostic and therapeutic options.


Assuntos
Infecções Fúngicas do Sistema Nervoso Central , Infecções do Sistema Nervoso Central , Eucariotos , Helmintos , Animais , Sistema Nervoso Central/microbiologia , Sistema Nervoso Central/parasitologia , Infecções do Sistema Nervoso Central/parasitologia , Eucariotos/fisiologia , Fungos/fisiologia , Alemanha , Helmintos/fisiologia , Humanos
12.
J Immunol ; 194(2): 553-9, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25480562

RESUMO

In response to primary Ag contact, naive mouse CD8(+) T cells undergo clonal expansion and differentiate into effector T cells. After pathogen clearance, most effector T cells die, and only a small number of memory T cell precursors (TMPs) survive to form a pool of long-lived memory T cells (TMs). Although high- and low-affinity CD8(+) T cell clones are recruited into the primary response, the TM pool consists mainly of high-affinity clones. It remains unclear whether the more efficient expansion of high-affinity clones and/or cell-intrinsic processes exclude low-affinity T cells from the TM pool. In this article, we show that the lack of IFN-γR signaling in CD8(+) T cells promotes TM formation in response to weak, but not strong, TCR agonists. The IFN-γ-sensitive accumulation of TMs correlates with reduced mammalian target of rapamycin activation and the accumulation of long-lived CD62L(hi)Bcl-2(hi)Eomes(hi) TMPs. Reconstitution of mammalian target of rapamycin or IFN-γR signaling is sufficient to block this process. Hence, our data suggest that IFN-γR signaling actively blocks the formation of TMPs responding to weak TCR agonists, thereby promoting the accumulation of high-affinity T cells finally dominating the TM pool.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Diferenciação Celular/imunologia , Memória Imunológica/fisiologia , Interferon gama/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Transdução de Sinais/imunologia , Animais , Diferenciação Celular/genética , Sobrevivência Celular/genética , Sobrevivência Celular/imunologia , Interferon gama/genética , Selectina L/genética , Selectina L/imunologia , Camundongos , Camundongos Knockout , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/imunologia , Receptores de Antígenos de Linfócitos T/genética , Receptores de Interferon/genética , Receptores de Interferon/imunologia , Transdução de Sinais/genética , Proteínas com Domínio T/genética , Proteínas com Domínio T/imunologia , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Receptor de Interferon gama
13.
Eur J Immunol ; 45(3): 818-28, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25472594

RESUMO

DCs contribute to immune homeostasis under physiological conditions and regulate the immune activation during infection. The deubiquitinase A20 inhibits the activation of NF-κB-dependent immune reactions, and prevents the hyperactivation of DCs under steady-state conditions. However, the role of DC-specific A20 under pathological conditions is unknown. Here, we demonstrate that upon injection of low-dose LPS, mice with DC-specific A20 deletion (CD11c-Cre A20(fl/fl) ) died within 6 h, whereas A20(fl/fl) controls survived. LPS-induced mortality in CD11c-Cre A20(fl/fl) mice was characterized by increased serum levels of IL-2, IL-10, IL-12, IFN-γ, and TNF. Upon LPS stimulation, the activation of NF-κB and ERK-NFATc3 pathways were enhanced in A20-deficient DCs, resulting in an increased production of IL-2, IL-12, and TNF both in vitro and in vivo. Targeted inhibition of ERK in A20-deficient DCs abolished the increased production of IL-2. A20-deficient DCs failed to induce LPS tolerance, which was independent of T cells and the intestinal flora, since T-cell depletion and decolonization of CD11c-Cre A20(fl/fl) mice could not prevent death of LPS-challenged CD11c-Cre A20(fl/fl) mice. In conclusion, these findings show that DC-specific A20 preserves immune homeostasis in steady-state conditions and is also required for LPS tolerance.


Assuntos
Cisteína Endopeptidases/imunologia , Células Dendríticas/imunologia , Regulação da Expressão Gênica/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Lipopolissacarídeos/toxicidade , Animais , Cisteína Endopeptidases/genética , Citocinas/genética , Citocinas/imunologia , Células Dendríticas/patologia , MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/imunologia , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Camundongos Transgênicos , Linfócitos T/imunologia , Linfócitos T/patologia , Proteína 3 Induzida por Fator de Necrose Tumoral alfa
14.
Eur J Immunol ; 45(5): 1366-76, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25675948

RESUMO

The deubiquitinating enzyme CYLD is an important tumor suppressor and inhibitor of immune responses. In contrast to full-length CYLD, the immunological function of the naturally occurring short splice variant of CYLD (sCYLD) is insufficiently described. Previously, we showed that DCs, which lack full-length CYLD but express sCYLD, exhibit augmented NF-κB and DC activation. To explore the function of sCYLD in infection, we investigated whether DC-specific sCYLD regulates the pathogenesis of listeriosis. Upon Listeria monocytogenes infection of CD11c-Cre Cyld(ex7/8 fl/fl) mice, infection of CD8α(+) DCs, which are crucial for the establishment of listeriosis in the spleen, was not affected. However, NF-κB activity of CD11c-Cre Cyld(ex7/8 fl/fl) DCs was increased, while activation of ERK and p38 was normal. In addition, CD11c-Cre Cyld(ex7/8 fl/fl) DCs produced more TNF, IL-10, and IL-12 upon infection, which led to enhanced stimulation of IFN-γ-producing NK cells. In addition CD11c-Cre Cyld(ex7/8 fl/fl) DCs presented Listeria Ag more efficiently to CD8(+) T cells resulting in a stronger pathogen-specific CD8(+) T-cell proliferation and more IFN-γ production. Collectively, the improved innate and adaptive immunity and survival during listeriosis identify the DC-specific FL-CYLD/sCYLD balance as a potential target to modulate NK-cell and Ag-specific CD8(+) T-cell responses.


Assuntos
Cisteína Endopeptidases/imunologia , Células Dendríticas/enzimologia , Células Dendríticas/imunologia , Listeriose/enzimologia , Listeriose/imunologia , Animais , Apresentação de Antígeno , Antígeno CD11c/genética , Antígeno CD11c/metabolismo , Antígenos CD8/metabolismo , Linfócitos T CD8-Positivos/imunologia , Cisteína Endopeptidases/genética , Citocinas/biossíntese , Células Dendríticas/metabolismo , Enzima Desubiquitinante CYLD , Feminino , Antígenos de Histocompatibilidade Classe I/metabolismo , Isoenzimas/genética , Isoenzimas/imunologia , Células Matadoras Naturais/imunologia , Leucócitos/imunologia , Leucócitos/patologia , Listeria monocytogenes/imunologia , Listeria monocytogenes/isolamento & purificação , Listeria monocytogenes/patogenicidade , Listeriose/microbiologia , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , NF-kappa B/metabolismo , Baço/imunologia , Baço/patologia , Regulação para Cima
15.
J Virol ; 89(5): 2731-8, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25540366

RESUMO

UNLABELLED: Previously we found that following intranasal (i.n.) infection with neurotropic vesicular stomatitis virus (VSV) type I interferon receptor (IFNAR) triggering of neuroectodermal cells was critically required to constrain intracerebral virus spread. To address whether locally active IFN-ß was induced proximally, we studied spatiotemporal conditions of VSV-mediated IFN-ß induction. To this end, we performed infection studies with IFN-ß reporter mice. One day after intravenous (i.v.) VSV infection, luciferase induction was detected in lymph nodes. Upon i.n. infection, luciferase induction was discovered at similar sites with delayed kinetics, whereas on days 3 and 4 postinfection enhanced luciferase expression additionally was detected in the foreheads of reporter mice. A detailed analysis of cell type-specific IFN-ß reporter mice revealed that within the olfactory bulb IFN-ß was expressed by neuroectodermal cells, primarily by astrocytes and to a lesser extent by neurons. Importantly, locally induced type I IFN triggered distal parts of the brain as indicated by the analysis of ISRE-eGFP mice which after i.n. VSV infection showed enhanced green fluorescent protein (eGFP) expression throughout the brain. Compared to wild-type mice, IFN-ß(-/-) mice showed increased mortality to i.n. VSV infection, whereas upon i.v. infection no such differences were detected highlighting the biological significance of intracerebrally expressed IFN-ß. In conclusion, upon i.n. VSV instillation, IFN-ß responses mounted by astrocytes within the olfactory bulb critically contribute to the antiviral defense by stimulating distal IFN-ß-negative brain areas and thus arresting virus spread. IMPORTANCE: The central nervous system has long been considered an immune privileged site. More recently, it became evident that specialized immune mechanisms are active within the brain to control pathogens. Previously, we showed that virus, which entered the brain via the olfactory route, was arrested within the olfactory bulb by a type I IFN-dependent mechanism. Since peripheral type I IFN would not readily cross the blood-brain barrier and within the brain thus far no abundant type I IFN responses have been detected, here we addressed from where locally active IFN originated from. We found that upon intranasal VSV instillation, primarily astrocytes, and to a lesser extent neurons, were stimulated within the olfactory bulb to mount IFN-ß responses that also activated and protected distal brain areas. Our results are surprising because in other infection models astrocytes have not yet been identified as major type I IFN producers.


Assuntos
Astrócitos/imunologia , Encefalite Viral/imunologia , Interferon beta/metabolismo , Bulbo Olfatório/imunologia , Infecções por Rhabdoviridae/imunologia , Vesiculovirus/imunologia , Animais , Astrócitos/virologia , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Genes Reporter , Proteínas de Fluorescência Verde/análise , Proteínas de Fluorescência Verde/genética , Interferon beta/deficiência , Luciferases/análise , Luciferases/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/imunologia , Neurônios/virologia , Bulbo Olfatório/virologia , Análise de Sobrevida
16.
J Am Soc Nephrol ; 26(11): 2789-99, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26015455

RESUMO

Ischemia-reperfusion injury (IRI) is the leading cause of ARF. A pathophysiologic role of the coagulation system in renal IRI has been established, but the functional relevance of thrombomodulin (TM)-dependent activated protein C (aPC) generation and the intracellular targets of aPC remain undefined. Here, we investigated the role of TM-dependent aPC generation and therapeutic aPC application in a murine renal IRI model and in an in vitro hypoxia and reoxygenation (HR) model using proximal tubular cells. In renal IRI, endogenous aPC levels were reduced. Genetic or therapeutic reconstitution of aPC efficiently ameliorated renal IRI independently of its anticoagulant properties. In tubular cells, cytoprotective aPC signaling was mediated through protease activated receptor-1- and endothelial protein C receptor-dependent regulation of the cold-shock protein Y-box binding protein-1 (YB-1). The mature 50 kD form of YB-1 was required for the nephro- and cytoprotective effects of aPC in vivo and in vitro, respectively. Reduction of mature YB-1 and K48-linked ubiquitination of YB-1 was prevented by aPC after renal IRI or tubular HR injury. aPC preserved the interaction of YB-1 with the deubiquitinating enzyme otubain-1 and maintained expression of otubain-1, which was required to reduce K48-linked YB-1 ubiquitination and to stabilize the 50 kD form of YB-1 after renal IRI and tubular HR injury. These data link the cyto- and nephroprotective effects of aPC with the ubiquitin-proteasome system and identify YB-1 as a novel intracellular target of aPC. These insights may provide new impetus for translational efforts aiming to restrict renal IRI.


Assuntos
Rim/patologia , Proteína C/metabolismo , Traumatismo por Reperfusão/patologia , Fatores de Transcrição/metabolismo , Ubiquitinação , Alelos , Animais , Anticoagulantes/química , Cruzamentos Genéticos , Cisteína Endopeptidases/genética , Modelos Animais de Doenças , Éxons , Hipóxia/patologia , Túbulos Renais/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Oxigênio/química , Transdução de Sinais , Trombose/metabolismo
17.
Eur J Immunol ; 44(7): 2139-52, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24723371

RESUMO

Although CD8(+) T cells that produce IL-17 (Tc17 cells) have been linked to host defense, Tc17 cells show reduced cytotoxic activity, which is the characteristic function of CD8(+) T cells. Here, we show that CTLA-4 enhances the frequency of IL-17 in CD8(+) T cells, indicating that CTLA-4 (CD152) specifically promotes Tc17 differentiation. Simultaneous stimulation of CTLA-4(+/+) and CTLA-4(-/-) T cells in cocultures and agonistic CTLA-4 stimulation unambiguously revealed a cell-intrinsic mechanism for IL-17 control by CTLA-4. The quality of CTLA-4-induced Tc17 cells was tested in vivo, utilizing infection with the facultative intracellular bacterium Listeria monocytogenes (LM). Unlike CTLA-4(+/+) Tc17 cells, CTLA-4(-/-) were nearly as efficient as Tc1 CTLA-4(+/+) cells in LM clearance. Additionally, adoptively transferred CTLA-4(-/-) Tc17 cells expressed granzyme B after rechallenge, and produced Tc1 cytokines such as IFN-γ and TNF-α, which strongly correlate with bacterial clearance. CTLA-4(+/+) Tc17 cells demonstrated a high-quality Tc17 differentiation program ex vivo, which was also evident in isolated IL-17-secreting Tc17 cells, with CTLA-4-mediated enhanced upregulation of Tc17-related molecules such as IL-17A, RORγt, and IRF-4. Our results show that CTLA-4 promotes Tc17 differentiation that results in robust Tc17 responses. Its inactivation might therefore represent a central therapeutic target to enhance clearance of infection.


Assuntos
Linfócitos T CD8-Positivos/citologia , Antígeno CTLA-4/fisiologia , Diferenciação Celular , Interleucina-17/biossíntese , Animais , Apoptose , Linhagem da Célula , Proliferação de Células , Citocinas/biossíntese , Citotoxicidade Imunológica , Granzimas/biossíntese , Camundongos , Camundongos Endogâmicos C57BL
18.
PLoS Pathog ; 9(6): e1003455, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23825949

RESUMO

The facultative intracellular bacterium Listeria monocytogenes (Lm) may cause severe infection in humans and livestock. Control of acute listeriosis is primarily dependent on innate immune responses, which are strongly regulated by NF-κB, and tissue protective factors including fibrin. However, molecular pathways connecting NF-κB and fibrin production are poorly described. Here, we investigated whether the deubiquitinating enzyme CYLD, which is an inhibitor of NF-κB-dependent immune responses, regulated these protective host responses in murine listeriosis. Upon high dose systemic infection, all C57BL/6 Cyld(-/-) mice survived, whereas 100% of wildtype mice succumbed due to severe liver pathology with impaired pathogen control and hemorrhage within 6 days. Upon in vitro infection with Lm, CYLD reduced NF-κB-dependent production of reactive oxygen species, interleukin (IL)-6 secretion, and control of bacteria in macrophages. Furthermore, Western blot analyses showed that CYLD impaired STAT3-dependent fibrin production in cultivated hepatocytes. Immunoprecipitation experiments revealed that CYLD interacted with STAT3 in the cytoplasm and strongly reduced K63-ubiquitination of STAT3 in IL-6 stimulated hepatocytes. In addition, CYLD diminished IL-6-induced STAT3 activity by reducing nuclear accumulation of phosphorylated STAT3. In vivo, CYLD also reduced hepatic STAT3 K63-ubiquitination and activation, NF-κB activation, IL-6 and NOX2 mRNA production as well as fibrin production in murine listeriosis. In vivo neutralization of IL-6 by anti-IL-6 antibody, STAT3 by siRNA, and fibrin by warfarin treatment, respectively, demonstrated that IL-6-induced, STAT3-mediated fibrin production significantly contributed to protection in Cyld(-/-) mice. In addition, in vivo Cyld siRNA treatment increased STAT3 phosphorylation, fibrin production, pathogen control and survival of Lm-infected WT mice illustrating that therapeutic inhibition of CYLD augments the protective NF-κB/IL-6/STAT3 pathway and fibrin production.


Assuntos
Cisteína Endopeptidases/metabolismo , Fibrina/biossíntese , Interleucina-6/metabolismo , Listeria monocytogenes/metabolismo , Listeriose/metabolismo , Macrófagos/metabolismo , Fator de Transcrição STAT3/metabolismo , Animais , Anticoagulantes/farmacologia , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/imunologia , Enzima Desubiquitinante CYLD , Fibrina/genética , Fibrina/imunologia , Interleucina-6/genética , Interleucina-6/imunologia , Listeria monocytogenes/imunologia , Listeriose/tratamento farmacológico , Listeriose/genética , Listeriose/imunologia , Fígado/imunologia , Fígado/metabolismo , Fígado/patologia , Macrófagos/imunologia , Macrófagos/microbiologia , Glicoproteínas de Membrana/biossíntese , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/imunologia , Camundongos , Camundongos Knockout , NADPH Oxidase 2 , NADPH Oxidases/biossíntese , NADPH Oxidases/genética , NADPH Oxidases/imunologia , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/imunologia , Ubiquitinação/efeitos dos fármacos , Ubiquitinação/genética , Ubiquitinação/imunologia , Varfarina/farmacologia
19.
J Immunol ; 191(8): 4152-64, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-24043891

RESUMO

The use of replication-deficient adenoviruses as vehicles for transfer of foreign genes offers many advantages in a vaccine setting, eliciting strong cellular immune responses involving both CD8(+) and CD4(+) T cells. Further improving the immunogenicity, tethering of the inserted target Ag to MHC class II-associated invariant chain (Ii) greatly enhances both the presentation of most target Ags, as well as overall protection against viral infection, such as lymphocytic choriomeningitis virus (LCMV). The present study extends this vaccination concept to include protection against intracellular bacteria, using Listeria monocytogenes as a model organism. Protection in C57BL/6 mice against recombinant L. monocytogenes expressing an immunodominant epitope of the LCMV glycoprotein (GP33) was greatly accelerated, augmented, and prolonged following vaccination with an adenoviral vaccine encoding GP linked to Ii compared with vaccination with the unlinked vaccine. Studies using knockout mice demonstrated that CD8(+) T cells were largely responsible for this protection, which is mediated through perforin-dependent lysis of infected cells and IFN-γ production. Taking the concept a step further, vaccination of C57BL/6 (L. monocytogenes-resistant) and BALB/c (L. monocytogenes-susceptible) mice with adenoviral vectors encoding natural L. monocytogenes-derived soluble Ags (listeriolysin O and p60) revealed that tethering of these Ags to Ii markedly improved the vaccine-induced CD8(+) T cell response to two of three epitopes studied. More importantly, Ii linkage accelerated and augmented vaccine-induced protection in both mouse strains and prolonged protection, in particular that induced by the weak Ag, p60, in L. monocytogenes-susceptible BALB/c mice.


Assuntos
Antígenos de Diferenciação de Linfócitos B/imunologia , Linfócitos T CD8-Positivos/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Listeria monocytogenes/imunologia , Listeriose/prevenção & controle , Adenoviridae/genética , Animais , Antígenos Virais/genética , Antígenos Virais/imunologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/imunologia , Toxinas Bacterianas/genética , Toxinas Bacterianas/imunologia , Vacinas Bacterianas , Sequência de Bases , Epitopos de Linfócito T/genética , Epitopos de Linfócito T/imunologia , Feminino , Vetores Genéticos , Glicoproteínas/genética , Glicoproteínas/imunologia , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/imunologia , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/imunologia , Imunidade Celular , Interferon gama/biossíntese , Interferon gama/imunologia , Lipoproteínas/genética , Lipoproteínas/imunologia , Listeriose/imunologia , Coriomeningite Linfocítica/imunologia , Coriomeningite Linfocítica/prevenção & controle , Vírus da Coriomeningite Linfocítica/genética , Vírus da Coriomeningite Linfocítica/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Dados de Sequência Molecular , Antígenos O/genética , Antígenos O/imunologia , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/imunologia , Perforina/imunologia , Proteínas Virais/genética , Proteínas Virais/imunologia
20.
Beilstein J Org Chem ; 11: 860-8, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26124887

RESUMO

An Ullmann-type coupling reaction was employed for the preparation of several N-arylated monopyrrolotetrathiafulvalenes with variable substitution patterns. Spectroscopic and electrochemical properties of the coupling products strongly depend on the electronic nature of the aromatic substituents due to their direct conjugation with the tetrathiafulvalene chromophore. The crystal packing of the arylated monopyrrolotetrathiafulvalenes is primarily defined by networks of C-H···X weak hydrogen bonds and short S···S contacts involving the tetrathiafulvalene moieties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA