Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Cell ; 183(6): 1699-1713.e13, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-33188775

RESUMO

To elucidate the role of Tau isoforms and post-translational modification (PTM) stoichiometry in Alzheimer's disease (AD), we generated a high-resolution quantitative proteomics map of 95 PTMs on multiple isoforms of Tau isolated from postmortem human tissue from 49 AD and 42 control subjects. Although Tau PTM maps reveal heterogeneity across subjects, a subset of PTMs display high occupancy and frequency for AD, suggesting importance in disease. Unsupervised analyses indicate that PTMs occur in an ordered manner, leading to Tau aggregation. The processive addition and minimal set of PTMs associated with seeding activity was further defined by analysis of size-fractionated Tau. To summarize, features in the Tau protein critical for disease intervention at different stages of disease are identified, including enrichment of 0N and 4R isoforms, underrepresentation of the C terminus, an increase in negative charge in the proline-rich region (PRR), and a decrease in positive charge in the microtubule binding domain (MBD).


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Processamento de Proteína Pós-Traducional , Proteínas tau/metabolismo , Estudos de Casos e Controles , Estudos de Coortes , Progressão da Doença , Humanos , Análise de Componente Principal , Isoformas de Proteínas/metabolismo
2.
Bioinformatics ; 40(Suppl 2): ii70-ii78, 2024 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-39230699

RESUMO

MOTIVATION: Accurate quantitative information about protein abundance is crucial for understanding a biological system and its dynamics. Protein abundance is commonly estimated using label-free, bottom-up mass spectrometry (MS) protocols. Here, proteins are digested into peptides before quantification via MS. However, missing peptide abundance values, which can make up more than 50% of all abundance values, are a common issue. They result in missing protein abundance values, which then hinder accurate and reliable downstream analyses. RESULTS: To impute missing abundance values, we propose PEPerMINT, a graph neural network model working directly on the peptide level that flexibly takes both peptide-to-protein relationships in a graph format as well as amino acid sequence information into account. We benchmark our method against 11 common imputation methods on 6 diverse datasets, including cell lines, tissue, and plasma samples. We observe that PEPerMINT consistently outperforms other imputation methods. Its prediction performance remains high for varying degrees of missingness, different evaluation approaches, and differential expression prediction. As an additional novel feature, PEPerMINT provides meaningful uncertainty estimates and allows for tailoring imputation to the user's needs based on the reliability of imputed values. AVAILABILITY AND IMPLEMENTATION: The code is available at https://github.com/DILiS-lab/pepermint.


Assuntos
Espectrometria de Massas , Redes Neurais de Computação , Peptídeos , Proteômica , Proteômica/métodos , Peptídeos/química , Espectrometria de Massas/métodos , Humanos , Software , Algoritmos , Bases de Dados de Proteínas
3.
Brain ; 147(2): 637-648, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38236720

RESUMO

Aggregation prone molecules, such as tau, form both historically well characterized fibrillar deposits (neurofibrillary tangles) and recently identified phosphate-buffered saline (PBS) extract species called proteopathic seeds. Both can cause normal endogenous tau to undergo templated misfolding. The relationship of these seeds to the fibrils that define tau-related diseases is unknown. We characterized the aqueous extractable and sarkosyl insoluble fibrillar tau species derived from human Alzheimer brain using mass spectrometry and in vitro bioassays. Post-translational modifications (PTMs) including phosphorylation, acetylation and ubiquitination are identified in both preparations. PBS extract seed competent tau can be distinguished from sarkosyl insoluble tau by the presence of overlapping, but less abundant, PTMs and an absence of some PTMs unique to the latter. The presence of ubiquitin and other PTMs on the PBS-extracted tau species correlates with the amount of tau in the seed competent size exclusion fractions, with the bioactivity and with the aggressiveness of clinical disease. These results demonstrate that the PTMs present on bioactive, seed competent PBS extract tau species are closely related to, but distinct from, the PTMs of mature paired helical filaments, consistent with the idea that they are a forme fruste of tau species that ultimately form fibrils.


Assuntos
Doença de Alzheimer , Emaranhados Neurofibrilares , Humanos , Emaranhados Neurofibrilares/metabolismo , Doença de Alzheimer/metabolismo , Proteínas tau/metabolismo , Processamento de Proteína Pós-Traducional , Fosforilação
4.
J Proteome Res ; 21(4): 899-909, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35086334

RESUMO

In liquid-chromatography-tandem-mass-spectrometry-based proteomics, information about the presence and stoichiometry of protein modifications is not readily available. To overcome this problem, we developed multiFLEX-LF, a computational tool that builds upon FLEXIQuant, which detects modified peptide precursors and quantifies their modification extent by monitoring the differences between observed and expected intensities of the unmodified precursors. multiFLEX-LF relies on robust linear regression to calculate the modification extent of a given precursor relative to a within-study reference. multiFLEX-LF can analyze entire label-free discovery proteomics data sets in a precursor-centric manner without preselecting a protein of interest. To analyze modification dynamics and coregulated modifications, we hierarchically clustered the precursors of all proteins based on their computed relative modification scores. We applied multiFLEX-LF to a data-independent-acquisition-based data set acquired using the anaphase-promoting complex/cyclosome (APC/C) isolated at various time points during mitosis. The clustering of the precursors allows for identifying varying modification dynamics and ordering the modification events. Overall, multiFLEX-LF enables the fast identification of potentially differentially modified peptide precursors and the quantification of their differential modification extent in large data sets using a personal computer. Additionally, multiFLEX-LF can drive the large-scale investigation of the modification dynamics of peptide precursors in time-series and case-control studies. multiFLEX-LF is available at https://gitlab.com/SteenOmicsLab/multiflex-lf.


Assuntos
Proteínas , Proteômica , Cromatografia Líquida , Espectrometria de Massas , Peptídeos
5.
J Proteome Res ; 21(11): 2810-2814, 2022 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-36201825

RESUMO

Combining robust proteomics instrumentation with high-throughput enabling liquid chromatography (LC) systems (e.g., timsTOF Pro and the Evosep One system, respectively) enabled mapping the proteomes of 1000s of samples. Fragpipe is one of the few computational protein identification and quantification frameworks that allows for the time-efficient analysis of such large data sets. However, it requires large amounts of computational power and data storage space that leave even state-of-the-art workstations underpowered when it comes to the analysis of proteomics data sets with 1000s of LC mass spectrometry runs. To address this issue, we developed and optimized a Fragpipe-based analysis strategy for a high-performance computing environment and analyzed 3348 plasma samples (6.4 TB) that were longitudinally collected from hospitalized COVID-19 patients under the auspice of the Immunophenotyping Assessment in a COVID-19 Cohort (IMPACC) study. Our parallelization strategy reduced the total runtime by ∼90% from 116 (theoretical) days to just 9 days in the high-performance computing environment. All code is open-source and can be deployed in any Simple Linux Utility for Resource Management (SLURM) high-performance computing environment, enabling the analysis of large-scale high-throughput proteomics studies.


Assuntos
COVID-19 , Humanos , Cromatografia Líquida/métodos , Proteômica/métodos , Espectrometria de Massas/métodos , Proteoma/análise
6.
Mol Neurodegener ; 18(1): 10, 2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36732784

RESUMO

BACKGROUND: Mouse models that overexpress human mutant Tau (P301S and P301L) are commonly used in preclinical studies of Alzheimer's Disease (AD) and while several drugs showed therapeutic effects in these mice, they were ineffective in humans. This leads to the question to which extent the murine models reflect human Tau pathology on the molecular level. METHODS: We isolated insoluble, aggregated Tau species from two common AD mouse models during different stages of disease and characterized the modification landscape of the aggregated Tau using targeted and untargeted mass spectrometry-based proteomics. The results were compared to human AD and to human patients that suffered from early onset dementia and that carry the P301L Tau mutation. RESULTS: Both mouse models accumulate insoluble Tau species during disease. The Tau aggregation is driven by progressive phosphorylation within the proline rich domain and the C-terminus of the protein. This is reflective of early disease stages of human AD and of the pathology of dementia patients carrying the P301L Tau mutation. However, Tau ubiquitination and acetylation, which are important to late-stage human AD are not represented in the mouse models. CONCLUSION: AD mouse models that overexpress human Tau using risk mutations are a suitable tool for testing drug candidates that aim to intervene in the early formation of insoluble Tau species promoted by increased phosphorylation of Tau.


Assuntos
Doença de Alzheimer , Tauopatias , Humanos , Camundongos , Animais , Proteínas tau/genética , Proteínas tau/metabolismo , Camundongos Transgênicos , Tauopatias/metabolismo , Doença de Alzheimer/metabolismo , Fosforilação , Modelos Animais de Doenças
7.
iScience ; 26(7): 106909, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37332674

RESUMO

Characterizing perturbation of molecular pathways in congenital Zika virus (ZIKV) infection is critical for improved therapeutic approaches. Leveraging integrative systems biology, proteomics, and RNA-seq, we analyzed embryonic brain tissues from an immunocompetent, wild-type congenital ZIKV infection mouse model. ZIKV induced a robust immune response accompanied by the downregulation of critical neurodevelopmental gene programs. We identified a negative correlation between ZIKV polyprotein abundance and host cell cycle-inducing proteins. We further captured the downregulation of genes/proteins, many of which are known to be causative for human microcephaly, including Eomesodermin/T-box Brain Protein 2 (EOMES/TBR2) and Neuronal Differentiation 2 (NEUROD2). Disturbances of distinct molecular pathways in neural progenitors and post-mitotic neurons may contribute to complex brain phenotype of congenital ZIKV infection. Overall, this report on protein- and transcript-level dynamics enhances understanding of the ZIKV immunopathological landscape through characterization of fetal immune response in the developing brain.

8.
Pancreas ; 51(5): 435-444, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35881699

RESUMO

OBJECTIVES: Total pancreatectomy with islet autotransplantation (TPIAT) is a surgical option for refractory chronic pancreatitis-related pain. Despite the known clinical implications of TPIAT, the molecular effects remain poorly investigated. We performed the first hypothesis-generating study of the urinary proteome before and after TPIAT. METHODS: Twenty-two patients eligible for TPIAT were prospectively enrolled. Urine samples were collected the week before and 12 to 18 months after TPIAT. The urine samples were prepared for bottom-up label-free quantitative proteomics using the "MStern" protocol. RESULTS: Using 17 paired samples, we identified 2477 urinary proteins, of which 301 were significantly changed post-TPIAT versus pre-TPIAT. Our quantitative analysis revealed that the molecular response to TPIAT was highly sex-specific, with pronounced sex differences pre-TPIAT but minimal differences afterward. Comparing post-TPIAT versus pre-TPIAT, we found changes in cell-cell adhesion, intracellular vacuoles, and immune response proteins. After surgery, immunoglobulins, complement proteins, and cathepsins were increased, findings that may reflect glomerular damage. Finally, we identified both known and novel markers for immunoglobulin A nephropathy after 1 patient developed the disease 2 years after TPIAT. CONCLUSIONS: We found distinct changes in the urinary proteomic profile after TPIAT and the response to TPIAT is highly sex-specific.


Assuntos
Transplante das Ilhotas Pancreáticas , Pancreatite Crônica , Feminino , Humanos , Transplante das Ilhotas Pancreáticas/métodos , Masculino , Pancreatectomia/métodos , Pancreatite Crônica/cirurgia , Proteômica , Transplante Autólogo , Resultado do Tratamento
9.
Elife ; 92020 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-33284109

RESUMO

Improvements in LC-MS/MS methods and technology have enabled the identification of thousands of modified peptides in a single experiment. However, protein regulation by post-translational modifications (PTMs) is not binary, making methods to quantify the modification extent crucial to understanding the role of PTMs. Here, we introduce FLEXIQuant-LF, a software tool for large-scale identification of differentially modified peptides and quantification of their modification extent without knowledge of the types of modifications involved. We developed FLEXIQuant-LF using label-free quantification of unmodified peptides and robust linear regression to quantify the modification extent of peptides. As proof of concept, we applied FLEXIQuant-LF to data-independent-acquisition (DIA) data of the anaphase promoting complex/cyclosome (APC/C) during mitosis. The unbiased FLEXIQuant-LF approach to assess the modification extent in quantitative proteomics data provides a better understanding of the function and regulation of PTMs. The software is available at https://github.com/SteenOmicsLab/FLEXIQuantLF.


Assuntos
Peptídeos/química , Proteômica/métodos , Software , Algoritmos , Células HeLa , Humanos , Modelos Lineares
10.
J Vis Exp ; (135)2018 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-29889196

RESUMO

Cross-talk between genes, transcripts, and proteins is the key to cellular responses; hence, analysis of molecular levels as distinct entities is slowly being extended to integrative studies to enhance the understanding of molecular dynamics within cells. Current tools for the visualization and integration of proteomics with other omics datasets are inadequate for large-scale studies. Furthermore, they only capture basic sequence identify, discarding post-translational modifications and quantitation. To address these issues, we developed PoGo to map peptides with associated post-translational modifications and quantification to reference genome annotation. In addition, the tool was developed to enable the mapping of peptides identified from customized sequence databases incorporating single amino acid variants. While PoGo is a command line tool, the graphical interface PoGoGUI enables non-bioinformatics researchers to easily map peptides to 25 species supported by Ensembl genome annotation. The generated output borrows file formats from the genomics field and, therefore, visualization is supported in most genome browsers. For large-scale studies, PoGo is supported by TrackHubGenerator to create web-accessible repositories of data mapped to genomes that also enable an easy sharing of proteogenomics data. With little effort, this tool can map millions of peptides to reference genomes within only a few minutes, outperforming other available sequence-identity based tools. This protocol demonstrates the best approaches for proteogenomics mapping through PoGo with publicly available datasets of quantitative and phosphoproteomics, as well as large-scale studies.


Assuntos
Genoma/genética , Genômica/métodos , Peptídeos/genética , Processamento de Proteína Pós-Traducional/genética , Proteômica/métodos
11.
Cell Syst ; 5(2): 152-156.e4, 2017 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-28837811

RESUMO

Current tools for visualization and integration of proteomics with other omics datasets are inadequate for large-scale studies and capture only basic sequence identity information. Furthermore, the frequent reformatting of annotations for reference genomes required by these tools is known to be highly error prone. We developed PoGo for mapping peptides identified through mass spectrometry to overcome these limitations. PoGo reduced runtime and memory usage by 85% and 20%, respectively, and exhibited overall superior performance over other tools on benchmarking with large-scale human tissue and cancer phosphoproteome datasets comprising ∼3 million peptides. In addition, extended functionality enables representation of single-nucleotide variants, post-translational modifications, and quantitative features. PoGo has been integrated in established frameworks such as the PRIDE tool suite and OpenMS, as well as a standalone tool with user-friendly graphical interface. With the rapid increase of quantitative high-resolution datasets capturing proteomes and global modifications to complement orthogonal genomics platforms, PoGo provides a central utility enabling large-scale visualization and interpretation of transomics datasets.


Assuntos
Mapeamento de Peptídeos/métodos , Software , Linhagem Celular Tumoral , Genômica/métodos , Humanos , Anotação de Sequência Molecular , Proteômica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA