Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Small ; : e2310955, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38634220

RESUMO

DNA origami is a flexible platform for the precise organization of nano-objects, enabling numerous applications from biomedicine to nano-photonics. Its huge potential stems from its high flexibility that allows customized structures to meet specific requirements. The ability to generate diverse final structures from a common base by folding significantly enhances design variety and is regularly occurring in liquid. This study describes a novel approach that combines top-down lithography with bottom-up DNA origami techniques to control folding of the DNA origami with the adsorption on pre-patterned surfaces. Using this approach, tunable plasmonic dimer nano-arrays are fabricated on a silicon surface. This involves employing electron beam lithography to create adsorption sites on the surface and utilizing self-organized adsorption of DNA origami functionalized with two gold nanoparticles (AuNPs). The desired folding of the DNA origami helices can be controlled by the size and shape of the adsorption sites. This approach can for example be used to tune the center-to-center distance of the AuNPs dimers on the origami template. To demonstrate this technique's efficiency, the Raman signal of dye molecules (carboxy tetramethylrhodamine, TAMRA) coated on the AuNPs surface are investigated. These findings highlight the potential of tunable DNA origami-based plasmonic nanostructures for many applications.

2.
Angew Chem Int Ed Engl ; 62(39): e202305733, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37522820

RESUMO

Carbohydrates are the most abundant organic material on Earth and the structural "material of choice" in many living systems. Nevertheless, design and engineering of synthetic carbohydrate materials presently lag behind that for protein and nucleic acids. Bottom-up engineering of carbohydrate materials demands an atomic-level understanding of their molecular structures and interactions in condensed phases. Here, high-resolution scanning tunneling microscopy (STM) is used to visualize at submolecular resolution the three-dimensional structure of cellulose oligomers assembled on Au(1111) and the interactions that drive their assembly. The STM imaging, supported by ab initio calculations, reveals the orientation of all glycosidic bonds and pyranose rings in the oligomers, as well as details of intermolecular interactions between the oligomers. By comparing the assembly of D- and L-oligomers, these interactions are shown to be enantioselective, capable of driving spontaneous enantioseparation of cellulose chains from its unnatural enantiomer and promoting the formation of engineered carbohydrate assemblies in the condensed phases.

3.
Phys Rev Lett ; 126(5): 056001, 2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33605738

RESUMO

Using electrospray ion beam deposition, we collide the complex molecule Reichardt's dye (C_{41}H_{30}NO^{+}) at low, hyperthermal translational energy (2-50 eV) with a Cu(100) surface and image the outcome at single-molecule level by scanning tunneling microscopy. We observe bond-selective reaction induced by the translational kinetic energy. The collision impulse compresses the molecule and bends specific bonds, prompting them to react selectively. This dynamics drives the system to seek thermally inaccessible reactive pathways, since the compression timescale (subpicosecond) is much shorter than the thermalization timescale (nanosecond), thereby yielding reaction products that are unobtainable thermally.

4.
Angew Chem Int Ed Engl ; 59(15): 6207-6212, 2020 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-31965698

RESUMO

Among the prerequisites for the progress of single-molecule-based electronic devices are a better understanding of the electronic properties at the individual molecular level and the development of methods to tune the charge transport through molecular junctions. Scanning tunneling microscopy (STM) is an ideal tool not only for the characterization, but also for the manipulation of single atoms and molecules on surfaces. The conductance through a single molecule can be measured by contacting the molecule with atomic precision and forming a molecular bridge between the metallic STM tip electrode and the metallic surface electrode. The parameters affecting the conductance are mainly related to their electronic structure and to the coupling to the metallic electrodes. Here, the experimental and theoretical analyses are focused on single tetracenothiophene molecules and demonstrate that an in situ-induced direct desulfurization reaction of the thiophene moiety strongly improves the molecular anchoring by forming covalent bonds between molecular carbon and copper surface atoms. This bond formation leads to an increase of the conductance by about 50 % compared to the initial state.

5.
Nano Lett ; 16(1): 93-7, 2016 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-26619213

RESUMO

Nonlocal addressing-the "remote control"-of molecular switches promises more efficient processing for information technology, where fast speed of switching is essential. The surface state of the (111) facets of noble metals, a confined two-dimensional electron gas, provides a medium that enables transport of signals over large distances and hence can be used to address an entire ensemble of molecules simultaneously with a single stimulus. In this study we employ this characteristic to trigger a conformational switch in anthradithiophene (ADT) molecules by injection of hot carriers from a scanning tunneling microscope (STM) tip into the surface state of Cu(111). The carriers propagate laterally and trigger the switch in molecules at distances as far as 100 nm from the tip location. The switching process is shown to be long-ranged, fully reversible, and isomer selective, discriminating between cis and trans diastereomers, enabling maximum control.

6.
Nano Lett ; 14(10): 5693-7, 2014 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-25181332

RESUMO

Controlling light on the nanoscale in a similar way as electric currents has the potential to revolutionize the exchange and processing of information. Although light can be guided on this scale by coupling it to plasmons, that is, collective electron oscillations in metals, their local electronic control remains a challenge. Here, we demonstrate that an individual quantum system is able to dynamically gate the electrical plasmon generation. Using a single molecule in a double tunnel barrier between two electrodes we show that this gating can be exploited to monitor fast changes of the quantum system itself and to realize a single-molecule plasmon-generating field-effect transistor operable in the gigahertz range. This opens new avenues toward atomic scale quantum interfaces bridging nanoelectronics and nanophotonics.

7.
Nano Lett ; 13(6): 2846-50, 2013 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-23688309

RESUMO

Future combinations of plasmonics with nanometer-sized electronic circuits require strategies to control the electrical excitation of plasmons at the length scale of individual molecules. A unique tool to study the electrical plasmon excitation with ultimate resolution is scanning tunneling microscopy (STM). Inelastic tunnel processes generate plasmons in the tunnel gap that partially radiate into the far field where they are detectable as photons. Here we employ STM to study individual tris-(phenylpyridine)-iridium complexes on a C60 monolayer, and investigate the influence of their electronic structure on the plasmon excitation between the Ag(111) substrate and an Ag-covered Au tip. We demonstrate that the highest occupied molecular orbital serves as a spatially and energetically confined nanogate for plasmon excitation. This opens the way for using molecular tunnel junctions as electrically controlled plasmon sources.

8.
Phys Rev Lett ; 110(8): 086102, 2013 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-23473168

RESUMO

We report on the self-assembly of Fe adatoms on a Cu(111) surface that is patterned by a metal-organic honeycomb network, formed by coordination of dicarbonitrile pentaphenyl molecules with Cu adatoms. Fe atoms landing on the metal surface are mobile and steered by the quantum confinement of the surface state electrons towards the center of the network hexagonal cavities. In cavities hosting more than one Fe, preferential interatomic distances are observed. The adatoms in each hexagon aggregate into a single cluster upon gentle annealing. These clusters are again centered in the cavities and their size is discerned by their distinct apparent heights.

9.
J Phys Chem Lett ; 14(8): 2072-2077, 2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36799542

RESUMO

The changes of properties and preferential interactions based on subtle energetic differences are important characteristics of organic molecules, particularly for their functionalities in biological systems. Only slightly energetically favored interactions are important for the molecular adsorption and bonding to surfaces, which define their properties for further technological applications. Here, prochiral tetracenothiophene molecules are adsorbed on the Cu(111) surface. The chiral adsorption configurations are determined by Scanning Tunneling Microscopy studies and confirmed by first-principles calculations. Remarkably, the selection of the adsorption sites by chemically different moieties of the molecules is dictated by the arrangement of the atoms in the first and second surface layers. Furthermore, we have investigated the thermal effects on the direct desulfurization reaction that occurs under the catalytic activity of the Cu substrate. This reaction leads to a product that is covalently bound to the surface in chiral configurations.

10.
Nat Commun ; 14(1): 8335, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38097575

RESUMO

The combination of low-temperature scanning tunnelling microscopy with a mass-selective electro-spray ion-beam deposition established the investigation of large biomolecules at nanometer and sub-nanometer scale. Due to complex architecture and conformational freedom, however, the chemical identification of building blocks of these biopolymers often relies on the presence of markers, extensive simulations, or is not possible at all. Here, we present a molecular probe-sensitisation approach addressing the identification of a specific amino acid within different peptides. A selective intermolecular interaction between the sensitiser attached at the tip-apex and the target amino acid on the surface induces an enhanced tunnelling conductance of one specific spectral feature, which can be mapped in spectroscopic imaging. Density functional theory calculations suggest a mechanism that relies on conformational changes of the sensitiser that are accompanied by local charge redistributions in the tunnelling junction, which, in turn, lower the tunnelling barrier at that specific part of the peptide.


Assuntos
Aminoácidos , Sondas Moleculares , Peptídeos/química , Sequência de Aminoácidos , Microscopia de Tunelamento
11.
J Am Chem Soc ; 131(11): 3881-3, 2009 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-19256496

RESUMO

A surface-supported open metal-organic nanomesh featuring a 24 nm(2) cavity size and extending to mum domains was fabricated by Co-directed assembly of para-hexaphenyl-dicarbonitrile linker molecules in two dimensions. The metallosupramolecular lattice is thermally robust and resides fully commensurate on the employed Ag(111) substrate as directly verified by high-resolution scanning tunneling microscopy observations.

12.
Chemphyschem ; 9(17): 2522-30, 2008 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-18991309

RESUMO

We report on a multi-technique investigation of the supramolecular organisation of N,N-diphenyl oxalic amide under differently dimensioned environments, namely three-dimensional (3D) in the bulk crystal, and in two dimensions on the Ag(111) surface as well as on the reconstructed Au(111) surface. With the help of X-ray structure analysis and scanning tunneling microscopy (STM) we find that the molecules organize in hydrogen-bonded chains with the bonding motif qualitatively changed by the surface confinement. In two dimensions, the chains exhibit enantiomorphic order even though they consist of a racemic mixture of chiral entities. By a combination of the STM data with near-edge X-ray absorption fine-structure spectroscopy, we show that the conformation of the molecule adapts such that the local registry of the functional group with the substrate is optimized while avoiding steric hindrance of the phenyl groups. In the low coverage case, the length of the chains is limited by the Au(111) reconstruction lines restricting the molecules into fcc stacked areas. A kinetic Monte Carlo simulated annealing is used to explain the selective assembly in the fcc stacked regions.

13.
Beilstein J Nanotechnol ; 8: 1388-1395, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28900594

RESUMO

With the increasing use of thin dielectric decoupling layers to study the electronic properties of organic molecules on metal surfaces, comparative studies are needed in order to generalize findings and formulate practical rules. In this paper we study the adsorption and electronic properties of pentacene deposited onto h-BN/Rh(111) and compare them with those of pentacene deposited onto KCl on various metal surfaces. When deposited onto KCl, the HOMO and LUMO energies of the pentacene molecules scale with the work functions of the combined KCl/metal surface. The magnitude of the variation between the respective KCl/metal systems indicates the degree of interaction of the frontier orbitals with the underlying metal. The results confirm that the so-called IDIS model developed by Willenbockel et al. applies not only to molecular layers on bare metal surfaces, but also to individual molecules on thin electronically decoupling layers. Depositing pentacene onto h-BN/Rh(111) results in significantly different adsorption characteristics, due to the topographic corrugation of the surface as well as the lateral electric fields it presents. These properties are reflected in the divergence from the aforementioned trend for the orbital energies of pentacene deposited onto h-BN/Rh(111), as well as in the different adsorption geometry. Thus, the highly desirable capacity of h-BN to trap molecules comes at the price of enhanced metal-molecule interaction, which decreases the HOMO-LUMO gap of the molecules. In spite of the enhanced interaction, the molecular orbitals are evident in scanning tunnelling spectroscopy (STS) and their shapes can be resolved by spectroscopic mapping.

14.
ACS Nano ; 11(5): 4703-4709, 2017 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-28437066

RESUMO

The ability to elucidate the elementary steps of a chemical reaction at the atomic scale is important for the detailed understanding of the processes involved, which is key to uncover avenues for improved reaction paths. Here, we track the chemical pathway of an irreversible direct desulfurization reaction of tetracenothiophene adsorbed on the Cu(111) closed-packed surface at the submolecular level. Using the precise control of the tip position in a scanning tunneling microscope and the electric field applied across the tunnel junction, the two carbon-sulfur bonds of a thiophene unit are successively cleaved. Comparison of spatially mapped molecular states close to the Fermi level of the metallic substrate acquired at each reaction step with density functional theory calculations reveals the two elementary steps of this reaction mechanism. The first reaction step is activated by an electric field larger than 2 V nm-1, practically in absence of tunneling electrons, opening the thiophene ring and leading to a transient intermediate. Subsequently, at the same threshold electric field and with simultaneous injection of electrons into the molecule, the exergonic detachment of the sulfur atom is triggered. Thus, a stable molecule with a bifurcated end is obtained, which is covalently bound to the metallic surface. The sulfur atom is expelled from the vicinity of the molecule.

15.
Microsc Res Tech ; 66(2-3): 105-16, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15880511

RESUMO

The high lateral resolution of spin-polarized scanning tunneling microscopy allows new insights into the spin structure of antiferromagnets on the nanometer range. We demonstrate the capability to image a well-defined in-plane component of the sample spin polarization and discuss the spin structure of antiferromagnetic bct Mn in contact with the ferromagnetic Fe(001) substrate. Mn atoms couple ferromagnetically within a Mn atomic plane, while normal to the surface a layer-wise antiferromagnetic order was found. Magnetic frustrations arise in this system at Fe substrate steps at the interface, where topologically induced 180 degrees domain walls are created in the Mn film. A clear widening of the enforced domain walls with increasing Mn thickness was found. The measured widths could be fitted with a linear function and are explained on the basis of a Heisenberg model.


Assuntos
Ferro/química , Magnetismo , Manganês/química , Cristalografia , Microscopia de Tunelamento
16.
ACS Nano ; 9(12): 12506-12, 2015 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-26580569

RESUMO

Single molecular switches are basic device elements in organic electronics. The pentacene analogue anthradithiophene (ADT) shows a fully reversible binary switching between different adsorption conformations on a metallic surface accompanied by a charge transfer. These transitions are activated locally in single molecules in a low-temperature scanning tunneling microscope . The switching induces changes between bistable orbital structures and energy level alignment at the interface. The most stable geometry, the "off" state, which all molecules adopt upon evaporation, corresponds to a short adsorption distance at which the electronic interactions of the acene rings bend the central part of the molecule toward the surface accompanied by a significant charge transfer from the metallic surface to the ADT molecules. This leads to a shift of the lowest unoccupied molecular orbital down to the Fermi level (EF). In the "on" state the molecule has a flat geometry at a larger distance from the surface; consequently the interaction is weaker, resulting in a negligible charge transfer with an orbital structure resembling the highest occupied molecular orbital when imaged close to EF. The potential barrier between these two states can be overcome reversibly by injecting charge carriers locally into individual molecules. Voltage-controlled current traces show a hysteresis characteristic of a bipolar switching behavior. The interpretation is supported by first-principles calculations.

17.
ACS Nano ; 9(4): 3605-16, 2015 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-25856066

RESUMO

Magnetochemistry recently emerged as a promising approach to control addressable spin arrays on surfaces. Here we report on the binding, spatial ordering, and magnetic properties of Fe on a highly regular Co-tetraphenylporphyrin (Co-TPP) template and highlight how the Fe controls the magnetism of the Co centers. As evidenced by scanning tunneling microscopy (STM) single Fe atoms attach to the saddle-shape conformers site-selectively in a unique coordination environment offered through a heptamer defined by the Co-N-C-C-C-N cyclic subunit. While the magnetic moment of Co is quenched for bare Co-TPP/Ag(111), the Fe presence revives it. Our X-ray magnetic circular dichroism (XMCD) experiments, complemented by density functional theory (DFT) calculations, evidence a ferromagnetic coupling between the Fe and the Co center concomitant with a complex charge redistribution involving the porphyrin ligand. Thus, we demonstrate an unusual metalloporphyrin coordination geometry that opens pathways to spatially order and engineer magnetic moments in surface-based nanostructures.

18.
Nat Commun ; 4: 2110, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23817525

RESUMO

The Kondo effect arises due to the interaction between a localized spin and the electrons of a surrounding host. Studies of individual magnetic impurities by scanning tunneling spectroscopy have renewed interest in Kondo physics; however, a quantitative comparison with theoretical predictions remained challenging. Here we show that the zero-bias anomaly detected on an organic radical weakly coupled to a Au (111) surface can be described with astonishing agreement by perturbation theory as originally developed by Kondo 60 years ago. Our results demonstrate that Kondo physics can only be fully conceived by studying both temperature and magnetic field dependence of the resonance. The identification of a spin 1/2 Kondo system is of relevance not only as a benchmark for predictions for Kondo physics but also for correlated electron materials in general.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA