Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
2.
Eur J Med Chem ; 272: 116447, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38714044

RESUMO

Histone deacetylase 6 (HDAC6) is an emerging drug target to treat oncological and non-oncological conditions. Since highly selective HDAC6 inhibitors display limited anticancer activity when used as single agent, they usually require combination therapies with other chemotherapeutics. In this work, we synthesized a mini library of analogues of the preferential HDAC6 inhibitor HPOB in only two steps via an Ugi four-component reaction as the key step. Biochemical HDAC inhibition and cell viability assays led to the identification of 1g (highest antileukemic activity) and 2b (highest HDAC6 inhibition) as hit compounds. In subsequent combination screens, both 1g and especially 2b showed synergy with DNA methyltransferase inhibitor decitabine in acute myeloid leukemia (AML). Our findings highlight the potential of combining HDAC6 inhibitors with DNA methyltransferase inhibitors as a strategy to improve AML treatment outcomes.


Assuntos
Antineoplásicos , Decitabina , Ensaios de Seleção de Medicamentos Antitumorais , Sinergismo Farmacológico , Desacetilase 6 de Histona , Inibidores de Histona Desacetilases , Leucemia Mieloide Aguda , Humanos , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/química , Inibidores de Histona Desacetilases/síntese química , Desacetilase 6 de Histona/antagonistas & inibidores , Desacetilase 6 de Histona/metabolismo , Decitabina/farmacologia , Decitabina/química , Relação Estrutura-Atividade , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/patologia , Leucemia Mieloide Aguda/metabolismo , Estrutura Molecular , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Sobrevivência Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Linhagem Celular Tumoral , Peptoides/química , Peptoides/farmacologia , Peptoides/síntese química , Aminopiridinas , Benzamidas
3.
Heliyon ; 10(13): e34033, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39071567

RESUMO

Combining multiple drugs broadens the window of therapeutic opportunities and is crucial for diseases that are currently lacking fully curative treatments. A powerful emerging tool for selecting effective drugs and combinations is the high-throughput drug screening (HTP). The histone deacetylase inhibitor (HDACi) givinostat (ITF2357) has been shown to act effectively against CRLF2-rearranged pediatric B-cell precursor acute lymphoblastic leukemia (BCP-ALL), a subtype characterized by poor outcome and enriched in children with Down Syndrome, very fragile patients with a high susceptibility to treatment-related toxicity. The aim of this study is to investigate possible synergies with givinostat for these difficult-to-treat patients by performing HTP screening with a library of 174 drugs, either approved or in preclinical studies. By applying this approach to the CRLF2-r MHH-CALL-4 cell line, we identified 19 compounds with higher sensitivity in combination with givinostat compared to the single treatments. Next, the synergy between givinostat and the promising candidates was further validated in CRLF2r cell lines with a broad matrix of concentrations. The combinations with trametinib (MEKi) or venetoclax (BCL2i) were found to be the most effective and with the greatest synergy across three metrics (ZIP, HAS, Bliss). Their efficacy was confirmed in primary blasts treated ex vivo at concentration ranges with a safe profile on healthy cells. Finally, we described givinostat-induced modifications in gene expression of MAPK and BCL-2 family members, supporting the observed synergistic interactions. Overall, our study represents a model of drug repurposing strategy using HTP screening for identifying synergistic, efficient, and safe drug combinations.

4.
Blood Adv ; 8(19): 4997-5011, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39008716

RESUMO

ABSTRACT: Central nervous system (CNS) involvement remains a clinical hurdle in treating childhood B-cell precursor acute lymphoblastic leukemia (BCP-ALL). The disease mechanisms of CNS leukemia are primarily investigated using 2-dimensional cell culture and mouse models. Given the variations in cellular identity and architecture between the human and murine CNS, it becomes imperative to seek complementary models to study CNS leukemia. Here, we present a first-of-its-kind 3-dimensional coculture model combining human brain organoids and BCP-ALL cells. We noticed significantly higher engraftment of BCP-ALL cell lines and patient-derived xenograft (PDX) cells in cerebral organoids than non-ALL cells. To validate translatability between organoid coculture and in vivo murine models, we confirmed that targeting CNS leukemia-relevant pathways such as CD79a/Igα or C-X-C motif chemokine receptor 4-stromal cell-derived factor 1 reduced the invasion of BCP-ALL cells into organoids. RNA sequencing and functional validations of organoid-invading leukemia cells compared with the noninvaded fraction revealed significant upregulation of activator protein 1 (AP-1) transcription factor-complex members in organoid-invading cells. Moreover, we detected a significant enrichment of AP-1 pathway genes in PDX ALL cells recovered from the CNS compared with spleen blasts of mice that had received transplantation with TCF3::PBX1+ PDX cells, substantiating the role of AP-1 signaling in CNS disease. Accordingly, we found significantly higher levels of the AP-1 gene, jun proto-oncogene, in patients initially diagnosed as CNS-positive BCP-ALL compared with CNS-negative cases as well as CNS-relapse vs non-CNS-relapse cases in a cohort of 100 patients with BCP-ALL. Our results suggest CNS organoids as a novel model to investigate CNS involvement and identify the AP-1 pathway as a critical driver of CNS disease in BCP-ALL.


Assuntos
Técnicas de Cocultura , Organoides , Transdução de Sinais , Fator de Transcrição AP-1 , Humanos , Organoides/metabolismo , Fator de Transcrição AP-1/metabolismo , Animais , Camundongos , Encéfalo/metabolismo , Encéfalo/patologia , Proto-Oncogene Mas , Neoplasias do Sistema Nervoso Central/metabolismo , Neoplasias do Sistema Nervoso Central/patologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças
5.
Cell Death Dis ; 14(12): 799, 2023 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-38057328

RESUMO

HSP90 has emerged as an appealing anti-cancer target. However, HSP90 inhibitors (HSP90i) are characterized by limited clinical utility, primarily due to the resistance acquisition via heat shock response (HSR) induction. Understanding the roles of abundantly expressed cytosolic HSP90 isoforms (α and ß) in sustaining malignant cells' growth and the mechanisms of resistance to HSP90i is crucial for exploiting their clinical potential. Utilizing multi-omics approaches, we identified that ablation of the HSP90ß isoform induces the overexpression of HSP90α and extracellular-secreted HSP90α (eHSP90α). Notably, we found that the absence of HSP90α causes downregulation of PTPRC (or CD45) expression and restricts in vivo growth of BCR-ABL1+ leukemia cells. Subsequently, chronic long-term exposure to the clinically advanced HSP90i PU-H71 (Zelavespib) led to copy number gain and mutation (p.S164F) of the HSP90AA1 gene, and HSP90α overexpression. In contrast, acquired resistance toward other tested HSP90i (Tanespimycin and Coumermycin A1) was attained by MDR1 efflux pump overexpression. Remarkably, combined CDK7 and HSP90 inhibition display synergistic activity against therapy-resistant BCR-ABL1+ patient leukemia cells via blocking pro-survival HSR and HSP90α overexpression, providing a novel strategy to avoid the emergence of resistance against treatment with HSP90i alone.


Assuntos
Antineoplásicos , Proteínas de Choque Térmico HSP90 , Leucemia , Neoplasias , Humanos , Antineoplásicos/farmacologia , Proteínas de Choque Térmico HSP90/metabolismo , Leucemia/tratamento farmacológico , Leucemia/genética , Mutação , Resistencia a Medicamentos Antineoplásicos
6.
J Med Chem ; 65(22): 15457-15472, 2022 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-36351184

RESUMO

Using a microwave-assisted protocol, we synthesized 16 peptoid-capped HDAC inhibitors (HDACi) with fluorinated linkers and identified two hit compounds. In biochemical and cellular assays, 10h stood out as a potent unselective HDACi with remarkable cytotoxic potential against different therapy-resistant leukemia cell lines. 10h demonstrated prominent antileukemic activity with low cytotoxic activity toward healthy cells. Moreover, 10h exhibited synergistic interactions with the DNA methyltransferase inhibitor decitabine in AML cell lines. The comparison of crystal structures of HDAC6 complexes with 10h and its nonfluorinated counterpart revealed a similar occupation of the L1 loop pocket but slight differences in zinc coordination. The substitution pattern of the acyl residue turned out to be crucial in terms of isoform selectivity. The introduction of an isopropyl group onto the phenyl ring provided the highly HDAC6-selective inhibitor 10p, which demonstrated moderate synergy with decitabine and exceeded the HDAC6 selectivity of tubastatin A.


Assuntos
Antineoplásicos , Leucemia Mieloide Aguda , Peptoides , Humanos , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Inibidores de Histona Desacetilases/química , Desacetilase 6 de Histona , Peptoides/farmacologia , Peptoides/química , Decitabina , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Leucemia Mieloide Aguda/tratamento farmacológico , Linhagem Celular Tumoral , Histona Desacetilase 1 , Ácidos Hidroxâmicos/farmacologia , Ácidos Hidroxâmicos/uso terapêutico , Ácidos Hidroxâmicos/química
7.
J Med Chem ; 65(24): 16860-16878, 2022 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-36473103

RESUMO

In this work, we utilized the proteolysis targeting chimera (PROTAC) technology to achieve the chemical knock-down of histone deacetylase 6 (HDAC6). Two series of cereblon-recruiting PROTACs were synthesized via a solid-phase parallel synthesis approach, which allowed the rapid preparation of two HDAC6 degrader mini libraries. The PROTACs were either based on an unselective vorinostat-like HDAC ligand or derived from a selective HDAC6 inhibitor. Notably, both PROTAC series demonstrated selective degradation of HDAC6 in leukemia cell lines. The best degraders from each series (denoted A6 and B4) were capable of degrading HDAC6 via ternary complex formation and the ubiquitin-proteasome pathway, with DC50 values of 3.5 and 19.4 nM, respectively. PROTAC A6 demonstrated promising antiproliferative activity via inducing apoptosis in myeloid leukemia cell lines. These findings highlight the potential of this series of degraders as effective pharmacological tools for the targeted degradation of HDAC6.


Assuntos
Antineoplásicos , Desacetilase 6 de Histona , Antineoplásicos/farmacologia , Quimera de Direcionamento de Proteólise , Técnicas de Síntese em Fase Sólida , Proliferação de Células , Proteólise , Ubiquitina-Proteína Ligases/metabolismo
8.
Pharmaceuticals (Basel) ; 15(3)2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35337131

RESUMO

Artemisinin-based combination therapies (ACTs) are the gold standard for the treatment of malaria, but the efficacy is threatened by the development of parasite resistance. Histone deacetylase inhibitors (HDACis) are an emerging new class of potential antiplasmodial drugs. In this work, we present the design, synthesis, and biological evaluation of a mini library of dihydroartemisinin-HDACi hybrid molecules. The screening of the hybrid molecules for their activity against selected human HDAC isoforms, asexual blood stage P. falciparum parasites, and a panel of leukemia cell lines delivered important structure-activity relationships. All synthesized compounds demonstrated potent activity against the 3D7 and Dd2 line of P. falciparum with IC50 values in the single-digit nanomolar range. Furthermore, the hybrid (α)-7c displayed improved activity against artemisinin-resistant parasites compared to dihydroartemisinin. The screening of the compounds against five cell lines from different leukemia entities revealed that all hydroxamate-based hybrids (7a-e) and the ortho-aminoanilide 8 exceeded the antiproliferative activity of dihydroartemisinin in four out of five cell lines. Taken together, this series of hybrid molecules represents an excellent starting point toward the development of antimalarial and antileukemia drug leads.

9.
Cell Death Dis ; 13(11): 938, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36347842

RESUMO

Inhibition of the mitochondrial metabolism offers a promising therapeutic approach for the treatment of cancer. Here, we identify the mycotoxin viriditoxin (VDT), derived from the endophytic fungus Cladosporium cladosporioides, as an interesting candidate for leukemia and lymphoma treatment. VDT displayed a high cytotoxic potential and rapid kinetics of caspase activation in Jurkat leukemia and Ramos lymphoma cells in contrast to solid tumor cells that were affected to a much lesser extent. Most remarkably, human hematopoietic stem and progenitor cells and peripheral blood mononuclear cells derived from healthy donors were profoundly resilient to VDT-induced cytotoxicity. Likewise, the colony-forming capacity was affected only at very high concentrations, which provides a therapeutic window for cancer treatment. Intriguingly, VDT could directly activate the mitochondrial apoptosis pathway in leukemia cells in the presence of antiapoptotic Bcl-2 proteins. The mitochondrial toxicity of VDT was further confirmed by inhibition of mitochondrial respiration, breakdown of the mitochondrial membrane potential (ΔΨm), the release of mitochondrial cytochrome c, generation of reactive oxygen species (ROS), processing of the dynamin-like GTPase OPA1 and subsequent fission of mitochondria. Thus, VDT-mediated targeting of mitochondrial oxidative phosphorylation (OXPHOS) might represent a promising therapeutic approach for the treatment of leukemia and lymphoma without affecting hematopoietic stem and progenitor cells.


Assuntos
Leucemia , Linfoma , Micotoxinas , Humanos , Micotoxinas/metabolismo , Leucócitos Mononucleares/metabolismo , Apoptose , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Leucemia/tratamento farmacológico , Leucemia/metabolismo , Linfoma/tratamento farmacológico , Linfoma/metabolismo , Potencial da Membrana Mitocondrial
10.
Front Immunol ; 13: 856230, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35464417

RESUMO

Beauvericin (BEA), a mycotoxin of the enniatin family produced by various toxigenic fungi, has been attributed multiple biological activities such as anti-cancer, anti-inflammatory, and anti-microbial functions. However, effects of BEA on dendritic cells remain unknown so far. Here, we identified effects of BEA on murine granulocyte-macrophage colony-stimulating factor (GM-CSF)-cultured bone marrow derived dendritic cells (BMDCs) and the underlying molecular mechanisms. BEA potently activates BMDCs as signified by elevated IL-12 and CD86 expression. Multiplex immunoassays performed on myeloid differentiation primary response 88 (MyD88) and toll/interleukin-1 receptor (TIR) domain containing adaptor inducing interferon beta (TRIF) single or double deficient BMDCs indicate that BEA induces inflammatory cytokine and chemokine production in a MyD88/TRIF dependent manner. Furthermore, we found that BEA was not able to induce IL-12 or IFNß production in Toll-like receptor 4 (Tlr4)-deficient BMDCs, whereas induction of these cytokines was not compromised in Tlr3/7/9 deficient BMDCs. This suggests that TLR4 might be the functional target of BEA on BMDCs. Consistently, in luciferase reporter assays BEA stimulation significantly promotes NF-κB activation in mTLR4/CD14/MD2 overexpressing but not control HEK-293 cells. RNA-sequencing analyses further confirmed that BEA induces transcriptional changes associated with the TLR4 signaling pathway. Together, these results identify TLR4 as a cellular BEA sensor and define BEA as a potent activator of BMDCs, implying that this compound can be exploited as a promising candidate structure for vaccine adjuvants or cancer immunotherapies.


Assuntos
Micotoxinas , Receptor 4 Toll-Like , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Citocinas/metabolismo , Células Dendríticas , Depsipeptídeos , Células HEK293 , Humanos , Interleucina-12/metabolismo , Camundongos , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo
11.
ACS Cent Sci ; 8(5): 636-655, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35647282

RESUMO

Heat shock proteins 90 (Hsp90) are promising therapeutic targets due to their involvement in stabilizing several aberrantly expressed oncoproteins. In cancerous cells, Hsp90 expression is elevated, thereby exerting antiapoptotic effects, which is essential for the malignant transformation and tumor progression. Most of the Hsp90 inhibitors (Hsp90i) under investigation target the ATP binding site in the N-terminal domain of Hsp90. However, adverse effects, including induction of the prosurvival resistance mechanism (heat shock response or HSR) and associated dose-limiting toxicity, have so far precluded their clinical approval. In contrast, modulators that interfere with the C-terminal domain (CTD) of Hsp90 do not inflict HSR. Since the CTD dimerization of Hsp90 is essential for its chaperone activity, interfering with the dimerization process by small-molecule protein-protein interaction inhibitors is a promising strategy for anticancer drug research. We have developed a first-in-class small-molecule inhibitor (5b) targeting the Hsp90 CTD dimerization interface, based on a tripyrimidonamide scaffold through structure-based molecular design, chemical synthesis, binding mode model prediction, assessment of the biochemical affinity, and efficacy against therapy-resistant leukemia cells. 5b reduces xenotransplantation of leukemia cells in zebrafish models and induces apoptosis in BCR-ABL1+ (T315I) tyrosine kinase inhibitor-resistant leukemia cells, without inducing HSR.

12.
ChemMedChem ; 16(11): 1798-1803, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-33629513

RESUMO

The acetylome is important for maintaining the homeostasis of cells. Abnormal changes can result in the pathogenesis of immunological or neurological diseases, and degeneration can promote the manifestation of cancer. In particular, pharmacological intervention in the acetylome with pan-histone deacetylase (HDAC) inhibitors is clinically validated. However, these drugs exhibit an undesirable risk-benefit profile due to severe side effects. Selective HDAC inhibitors might promote patient compliance and represent a valuable opportunity in personalised medicine. Therefore, we envisioned the development of HDAC6-selective inhibitors. During our lead structure identification, we demonstrated that an alkoxyurea-based connecting unit proves to be beneficial for HDAC6 selectivity and established the synthesis of alkoxyurea-based hydroxamic acids. Herein, we report highly potent N-alkoxyurea-based hydroxamic acids with improved HDAC6 preference compared to nexturastat A. We further validated the biological activity of these oxa analogues of nexturastat A in a broad subset of leukaemia cell lines and demonstrated their superior anti-proliferative properties compared to nexturastat A.


Assuntos
Antineoplásicos/farmacologia , Inibidores de Histona Desacetilases/farmacologia , Ácidos Hidroxâmicos/farmacologia , Compostos de Fenilureia/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Desacetilase 6 de Histona , Inibidores de Histona Desacetilases/síntese química , Inibidores de Histona Desacetilases/química , Humanos , Ácidos Hidroxâmicos/síntese química , Ácidos Hidroxâmicos/química , Simulação de Acoplamento Molecular , Estrutura Molecular , Compostos de Fenilureia/síntese química , Compostos de Fenilureia/química , Relação Estrutura-Atividade
13.
Chem Sci ; 12(35): 11873-11881, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34659728

RESUMO

The elevated expression of histone deacetylases (HDACs) in various tumor types renders their inhibition an attractive strategy for epigenetic therapeutics. One key issue in the development of improved HDAC inhibitors (HDACis) is the selectivity for single HDAC isoforms over unspecific pan inhibition to minimize off-target toxicity. Utilizing the carborane moiety as a fine-tuning pharmacophore, we herein present a robust solid phase synthetic approach towards tailor-made HDACis meeting both ends of the selectivity spectrum, namely pan inhibition and highly selective HDAC6 inhibition.

14.
J Med Chem ; 64(19): 14620-14646, 2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-34582215

RESUMO

Multitarget drugs are an emerging alternative to combination therapies. In three iterative cycles of design, synthesis, and biological evaluation, we developed a novel type of potent hybrid inhibitors of bromodomain, and extra-terminal (BET) proteins and histone deacetylases (HDACs) based on the BET inhibitor XD14 and well-established HDAC inhibitors. The most promising new hybrids, 49 and 61, displayed submicromolar inhibitory activity against HDAC1-3 and 6, and BRD4(1), and possess potent antileukemia activity. 49 induced apoptosis more effectively than the combination of ricolinostat and birabresib (1:1). The most balanced dual inhibitor, 61, induced significantly more apoptosis than the related control compounds 62 (no BRD4(1) affinity) and 63 (no HDAC inhibition) as well as the 1:1 combination of both. Additionally, 61 was well tolerated in an in vivo zebrafish toxicity model. Overall, our data suggest an advantage of dual HDAC/BET inhibitors over the combination of two single targeted compounds.


Assuntos
Antineoplásicos/química , Histona Desacetilases/química , Leucemia/tratamento farmacológico , Leucemia/patologia , Proteínas Nucleares/antagonistas & inibidores , Pirróis/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Proteínas de Ciclo Celular/antagonistas & inibidores , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Histona Desacetilases/farmacologia , Histona Desacetilases/uso terapêutico , Humanos , Fatores de Transcrição/antagonistas & inibidores
15.
Eur J Med Chem ; 211: 113095, 2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33360560

RESUMO

Targeting epigenetic dysregulation has emerged as a valuable therapeutic strategy in cancer treatment. Especially epigenetic combination therapy of histone deacetylase inhibitors (HDACi) with established anti-cancer drugs has provided promising results in preclinical and clinical studies. The structural optimization of alkoxyamide-based class I/IIb inhibitors afforded improved analogs with potent efficacy in cisplatin-resistant head and neck carcinoma cells and bortezomib-resistant leukemia cells. The most promising HDACi showed a superior synergistic cytotoxic activity as compared to vorinostat and class I HDACi in combination with cisplatin, leading to a full reversal of the chemoresistant phenotype in head and neck cancer cell lines, as well in combination with the proteasome inhibitors (bortezomib and carfilzomib) in a panel of leukemic cell lines. Furthermore, the most valuable alkoxyamide-based HDACi exhibited strong ex vivo anticancer efficacy against primary patient samples obtained from different therapy-resistant leukemic entities.


Assuntos
Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Epigenômica/métodos , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Inibidores de Histona Desacetilases/uso terapêutico , Leucemia/tratamento farmacológico , Antineoplásicos/farmacologia , Sinergismo Farmacológico , Neoplasias de Cabeça e Pescoço/patologia , Inibidores de Histona Desacetilases/farmacologia , Humanos , Leucemia/patologia
16.
J Med Chem ; 63(18): 10339-10351, 2020 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-32803970

RESUMO

Histone deacetylase 6 (HDAC6) is an emerging target for the treatment of cancer, neurodegenerative diseases, inflammation, and other diseases. Here, we present the multicomponent synthesis and structure-activity relationship of a series of tetrazole-based HDAC6 inhibitors. We discovered the hit compound NR-160 by investigating the inhibition of recombinant HDAC enzymes and protein acetylation. A cocrystal structure of HDAC6 complexed with NR-160 disclosed that the steric complementarity of the bifurcated capping group of NR-160 to the L1 and L2 loop pockets may be responsible for its HDAC6-selective inhibition. While NR-160 displayed only low cytotoxicity as a single agent against leukemia cell lines, it augmented the apoptosis induction of the proteasome inhibitor bortezomib in combination experiments significantly. Furthermore, a combinatorial high-throughput drug screen revealed significantly enhanced cytotoxicity when NR-160 was used in combination with epirubicin and daunorubicin. The synergistic effect in combination with bortezomib and anthracyclines highlights the potential of NR-160 in combination therapies.


Assuntos
Desacetilase 6 de Histona/antagonistas & inibidores , Inibidores de Histona Desacetilases/farmacologia , Tetrazóis/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Bortezomib/farmacologia , Linhagem Celular Tumoral , Daunorrubicina/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Sinergismo Farmacológico , Epirubicina/farmacologia , Desacetilase 6 de Histona/metabolismo , Inibidores de Histona Desacetilases/síntese química , Inibidores de Histona Desacetilases/metabolismo , Humanos , Microssomos Hepáticos/metabolismo , Estrutura Molecular , Ligação Proteica , Relação Estrutura-Atividade , Tetrazóis/síntese química , Tetrazóis/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA