Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Proc Natl Acad Sci U S A ; 110(37): 15103-8, 2013 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-23980178

RESUMO

Activity-dependent gene transcription, including that of the brain-derived neurotrophic factor (Bdnf) gene, has been implicated in various cognitive functions. We previously demonstrated that mutant mice with selective disruption of activity-dependent BDNF expression (BDNF-KIV mice) exhibit deficits in GABA-mediated inhibition in the prefrontal cortex (PFC). Here, we show that disruption of activity-dependent BDNF expression impairs BDNF-dependent late-phase long-term potentiation (L-LTP) in CA1, a site of hippocampal output to the PFC. Interestingly, early-phase LTP and conventional L-LTP induced by strong tetanic stimulation were completely normal in BDNF-KIV mice. In parallel, attenuation of activity-dependent BDNF expression significantly impairs spatial memory reversal and contextual memory extinction, two executive functions that require intact hippocampal-PFC circuitry. In contrast, spatial and contextual memory per se were not affected. Thus, activity-dependent BDNF expression in the hippocampus and PFC may contribute to cognitive and behavioral flexibility. These results suggest distinct roles for different forms of L-LTP and provide a link between activity-dependent BDNF expression and behavioral perseverance, a hallmark of several psychiatric disorders.


Assuntos
Comportamento Animal/fisiologia , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/fisiologia , Região CA1 Hipocampal/fisiologia , Córtex Pré-Frontal/fisiologia , Animais , Fator Neurotrófico Derivado do Encéfalo/deficiência , Cognição/fisiologia , Condicionamento Psicológico/fisiologia , Expressão Gênica , Potenciação de Longa Duração/genética , Potenciação de Longa Duração/fisiologia , Masculino , Aprendizagem em Labirinto/fisiologia , Memória de Curto Prazo/fisiologia , Camundongos , Camundongos Knockout , Camundongos Mutantes
2.
J Neurosci ; 33(7): 2961-72, 2013 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-23407954

RESUMO

Both social defeat stress and environmental enrichment stimulate adrenal glucocorticoid secretion, but they have opposing effects on hippocampal neurogenesis and mood. Hypothalamic-pituitary-adrenal axis dysregulation and decreased neurogenesis are consequences of social defeat. These outcomes are correlated with depressive states, but a causal role in the etiology of depression remains elusive. The antidepressant actions of environmental enrichment are neurogenesis-dependent, but the contribution of enrichment-elevated glucocorticoids is unexplored. Importantly, for both social defeat and environmental enrichment, how glucocorticoids interact with neurogenesis to alter mood is unknown. Here, we investigate causal roles of glucocorticoids and neurogenesis in induction of depressive-like behavior and its amelioration by environmental enrichment in mice. By blocking neurogenesis and surgically clamping adrenal hormone secretions, we showed that neurogenesis, via hypothalamic-pituitary-adrenal axis interactions, is directly involved in precipitating the depressive phenotype after social defeat. Mice adrenalectomized before social defeat showed enhanced behavioral resiliency and increased survival of adult-born hippocampal neurons compared with sham-operated defeated mice. However, mice lacking hippocampal neurogenesis did not show protective effects of adrenalectomy. Moreover, glucocorticoids secreted during environmental enrichment promoted neurogenesis and were required for restoration of normal behavior after social defeat. The data demonstrate that glucocorticoid-dependent declines in neurogenesis drive changes in mood after social defeat and that glucocorticoids secreted during enrichment promote neurogenesis and restore normal behavior after defeat. These data provide new evidence for direct involvement of neurogenesis in the etiology of depression, suggesting that treatments promoting neurogenesis can enhance stress resilience.


Assuntos
Afeto/fisiologia , Glucocorticoides/fisiologia , Neurogênese/fisiologia , Adaptação Psicológica/fisiologia , Adrenalectomia , Animais , Antimetabólitos , Comportamento Animal/fisiologia , Bromodesoxiuridina , Corticosterona/metabolismo , Corticosterona/farmacologia , Depressão/psicologia , Meio Ambiente , Abrigo para Animais , Camundongos , Camundongos Endogâmicos C57BL , Resiliência Psicológica , Comportamento Social , Predomínio Social , Estresse Psicológico/psicologia
3.
Behav Brain Funct ; 8: 15, 2012 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-22433906

RESUMO

BACKGROUND: Apathy is frequently observed in numerous neurological disorders, including Alzheimer's and Parkinson's, as well as neuropsychiatric disorders including schizophrenia. Apathy is defined as a lack of motivation characterized by diminished goal-oriented behavior and self-initiated activity. This study evaluated a chronic restraint stress (CRS) protocol in modeling apathetic behavior, and determined whether administration of an anticholinesterase had utility in attenuating CRS-induced phenotypes. METHODS: We assessed behavior as well as regional neuronal activity patterns using FosB immunohistochemistry after exposure to CRS for 6 h/d for a minimum of 21 d. Based on our FosB findings and recent clinical trials, we administered an anticholinesterase to evaluate attenuation of CRS-induced phenotypes. RESULTS: CRS resulted in behaviors that reflect motivational loss and diminished emotional responsiveness. CRS-exposed mice showed differences in FosB accumulation, including changes in the cholinergic basal forebrain system. Facilitating cholinergic signaling ameliorated CRS-induced deficits in initiation and motivational drive and rescued immediate early gene activation in the medial septum and nucleus accumbens. CONCLUSIONS: Some CRS protocols may be useful for studying deficits in motivation and apathetic behavior. Amelioration of CRS-induced behaviors with an anticholinesterase supports a role for the cholinergic system in remediation of deficits in motivational drive.


Assuntos
Inibidores da Colinesterase/farmacologia , Impulso (Psicologia) , Motivação/efeitos dos fármacos , Anedonia , Animais , Ansiedade/psicologia , Comportamento Animal/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Doença Crônica , Habituação Psicofisiológica/efeitos dos fármacos , Elevação dos Membros Posteriores , Processamento de Imagem Assistida por Computador , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Sistema Nervoso/fisiopatologia , Fenótipo , Fisostigmina/análogos & derivados , Fisostigmina/farmacologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Quinina/farmacologia , Restrição Física , Estresse Psicológico/psicologia , Natação/psicologia , Paladar
4.
Proc Natl Acad Sci U S A ; 106(14): 5942-7, 2009 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-19293383

RESUMO

Transcription of Bdnf is controlled by multiple promoters, which drive expression of multiple transcripts encoding for the same protein. Promoter IV contributes significantly to activity-dependent brain-derived neurotrophic factor (BDNF) transcription. We have generated promoter IV mutant mice (BDNF-KIV) by inserting a GFP-STOP cassette within the Bdnf exon IV locus. This genetic manipulation results in disruption of promoter IV-mediated Bdnf expression. BDNF-KIV animals exhibited significant deficits in GABAergic interneurons in the prefrontal cortex (PFC), particularly those expressing parvalbumin, a subtype implicated in executive function and schizophrenia. Moreover, disruption of promoter IV-driven Bdnf transcription impaired inhibitory but not excitatory synaptic transmission recorded from layer V pyramidal neurons in the PFC. The attenuation of GABAergic inputs resulted in an aberrant appearance of spike-timing-dependent synaptic potentiation (STDP) in PFC slices derived from BDNF-KIV, but not wild-type littermates. These results demonstrate the importance of promoter IV-dependent Bdnf transcription in GABAergic function and reveal an unexpected regulation of STDP in the PFC by BDNF.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/genética , Córtex Pré-Frontal/fisiologia , Regiões Promotoras Genéticas/fisiologia , Transmissão Sináptica , Transcrição Gênica , Animais , Potenciais Pós-Sinápticos Excitadores , Potenciais Pós-Sinápticos Inibidores , Camundongos , Camundongos Mutantes , Potenciais Sinápticos
5.
Proc Natl Acad Sci U S A ; 105(25): 8766-71, 2008 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-18562287

RESUMO

Recent microarray studies with stringent validating criteria identified Bcl-2-associated athanogene (BAG1) as a target for the actions of medications that are mainstays in the treatment of bipolar disorder (BPD). BAG1 is a Hsp70/Hsc70-regulating cochaperone that also interacts with glucocorticoid receptors (GRs) and attenuates their nuclear trafficking and function. Notably, glucocorticoids are one of the few agents capable of triggering both depressive and manic episodes in patients with BPD. As a nexus for the actions of glucocorticoids and bipolar medications, we hypothesized that the level of BAG1 expression would play a pivotal role in regulating affective-like behaviors. This hypothesis was investigated in neuron-selective BAG1 transgenic (TG) mice and BAG1 heterozygous knockout (+/-) mice. On mania-related tests, BAG1 TG mice recovered much faster than wild-type (WT) mice in the amphetamine-induced hyperlocomotion test and displayed a clear resistance to cocaine-induced behavioral sensitization. In contrast, BAG1+/- mice displayed an enhanced response to cocaine-induced behavioral sensitization. The BAG1 TG mice showed less anxious-like behavior on the elevated plus maze test and had higher spontaneous recovery rates from helplessness behavior compared with WT mice. In contrast, fewer BAG1+/- mice recovered from helplessness behavior compared with their WT controls. BAG1 TG mice also exhibited specific alterations of hippocampal proteins known to regulate GR function, including Hsp70 and FKBP51. These data suggest that BAG1 plays a key role in affective resilience and in regulating recovery from both manic-like and depression-like behavioral impairments.


Assuntos
Transtorno Bipolar/psicologia , Proteínas de Ligação a DNA/metabolismo , Transtorno Depressivo/psicologia , Fatores de Transcrição/metabolismo , Animais , Transtorno Bipolar/genética , Transtorno Bipolar/metabolismo , Proteínas de Ligação a DNA/genética , Transtorno Depressivo/genética , Transtorno Depressivo/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Camundongos , Camundongos Transgênicos , Proteínas de Ligação a Tacrolimo/metabolismo , Fatores de Transcrição/genética
6.
Brain Struct Funct ; 224(1): 471-483, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30377803

RESUMO

Signaling of brain-derived neurotrophic factor (BDNF) via tropomyosin receptor kinase B (TrkB) plays a critical role in the maturation of cortical inhibition and controls expression of inhibitory interneuron markers, including the neuropeptide cortistatin (CST). CST is expressed exclusively in a subset of cortical and hippocampal GABAergic interneurons, where it has anticonvulsant effects and controls sleep slow-wave activity (SWA). We hypothesized that CST-expressing interneurons play a critical role in regulating excitatory/inhibitory balance, and that BDNF, signaling through TrkB receptors on CST-expressing interneurons, is required for this function. Ablation of CST-expressing cells caused generalized seizures and premature death during early postnatal development, demonstrating a critical role for these cells in providing inhibition. Mice in which TrkB was selectively deleted from CST-expressing interneurons were hyperactive, slept less and developed spontaneous seizures. Frequencies of spontaneous excitatory post-synaptic currents (sEPSCs) on CST-expressing interneurons were attenuated in these mice. These data suggest that BDNF, signaling through TrkB receptors on CST-expressing cells, promotes excitatory drive onto these cells. Loss of excitatory drive onto CST-expressing cells that lack TrkB receptors may contribute to observed hyperexcitability and epileptogenesis.


Assuntos
Comportamento Animal , Ondas Encefálicas , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Encéfalo/metabolismo , Hipercinese/metabolismo , Interneurônios/metabolismo , Locomoção , Glicoproteínas de Membrana/metabolismo , Neuropeptídeos/metabolismo , Proteínas Tirosina Quinases/metabolismo , Convulsões/metabolismo , Transmissão Sináptica , Animais , Encéfalo/fisiopatologia , Potenciais Pós-Sinápticos Excitadores , Hipercinese/fisiopatologia , Hipercinese/prevenção & controle , Hipercinese/psicologia , Glicoproteínas de Membrana/deficiência , Glicoproteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Inibição Neural , Neuropeptídeos/deficiência , Neuropeptídeos/genética , Proteínas Tirosina Quinases/deficiência , Proteínas Tirosina Quinases/genética , Convulsões/fisiopatologia , Convulsões/prevenção & controle , Convulsões/psicologia , Sono
7.
Neuropsychopharmacology ; 33(1): 110-33, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17912251

RESUMO

Bipolar disorder (BPD) is characterized by recurrent episodes of disturbed affect including mania and depression as well as changes in psychovegetative function, cognitive performance, and general health. A growing body of data suggests that BPD arises from abnormalities in synaptic and neuronal plasticity cascades, leading to aberrant information processing in critical synapses and circuits. Thus, these illnesses can best be conceptualized as genetically influenced disorders of synapses and circuits rather than simply as deficits or excesses in individual neurotransmitters. In addition, commonly used mood-stabilizing drugs that are effective in treating BPD have been shown to target intracellular signaling pathways that control synaptic plasticity and cellular resilience. In this article we draw on clinical, preclinical, neuroimaging, and post-mortem data to discuss the neurobiology of BPD within a conceptual framework while highlighting the role of neuroplasticity in the pathophysiology and treatment of this disorder.


Assuntos
Antimaníacos/uso terapêutico , Transtorno Bipolar , Plasticidade Neuronal/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Animais , Transtorno Bipolar/tratamento farmacológico , Transtorno Bipolar/patologia , Transtorno Bipolar/fisiopatologia , Humanos , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Transdução de Sinais/fisiologia
8.
Neuropsychopharmacology ; 32(10): 2173-83, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17299510

RESUMO

Lithium inhibits glycogen synthase kinase-3 (GSK-3) at therapeutic concentrations; however, it is unclear if this inhibition and its downstream effects on specific signaling pathways are relevant to the treatment of bipolar disorder and depression. One of the targets of GSK-3 is the transcription factor beta-catenin. Normally active GSK-3 phosphorylates beta-catenin, leading to its degradation. Inhibition of GSK-3 therefore increases beta-catenin. We have utilized transgenic mice to investigate the behavioral consequences of CNS beta-catenin overexpression. Transgenic mice overexpressing beta-catenin demonstrated behavioral changes similar to those observed following the administration of lithium, including decreased immobility time in the forced swim test (FST). Further, we show that although acute administration of lithium and overexpression of the beta-catenin transgene inhibits d-amphetamine-induced hyperlocomotion, neither lithium nor the beta-catenin transgene prevents d-amphetamine-induced sensitization, as measured by locomotor activity. Both lithium-treated and beta-catenin mice had an elevated response to d-amphetamine following multiple administrations of the stimulant, though the difference in absolute locomotion was maintained throughout the sensitization time-course. Neither acute lithium nor beta-catenin overexpression had an effect on d-amphetamine-induced stereotyped behavior. The results of this study, in which beta-catenin transgenic mice exhibited behaviors identical to those observed in lithium-treated mice, are consistent with the hypothesis that the behavioral effects of lithium in these models are mediated through its direct inhibition of GSK-3 and the consequent increase in beta-catenin. By associating the behavioral effects of lithium with beta-catenin levels, these data suggest that increasing beta-catenin might be a novel therapeutic strategy for mood disorders.


Assuntos
Antimaníacos/farmacologia , Encéfalo/efeitos dos fármacos , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Lítio/farmacologia , beta Catenina/genética , Animais , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Modelos Animais de Doenças , Predisposição Genética para Doença/genética , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Camundongos , Camundongos Transgênicos , Transtornos do Humor/tratamento farmacológico , Transtornos do Humor/metabolismo , Transtornos do Humor/fisiopatologia , Fenótipo , Agitação Psicomotora/tratamento farmacológico , Agitação Psicomotora/genética , Agitação Psicomotora/fisiopatologia , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/fisiologia , beta Catenina/biossíntese
9.
Brain Struct Funct ; 222(7): 3295-3307, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28324222

RESUMO

Brain-derived neurotrophic factor (BDNF) is an activity-dependent neurotrophin critical for neuronal plasticity in the hippocampus. BDNF is encoded by multiple transcripts with alternative 5' untranslated regions (5'UTRS) that display activity-induced targeting to distinct subcellular compartments. While individual Bdnf 5'UTR transcripts influence dendrite morphology in cultured hippocampal neurons, it is unknown whether Bdnf splice variants impact dendrite arborization in functional classes of neurons in the intact hippocampus. Moreover, the contribution of Bdnf 5'UTR splice variants to dendritic spine density and shape has not been explored. We analyzed the structure of CA1 and CA3 dendrite arbors in transgenic mice lacking BDNF production from exon (Ex) 1, 2, 4, or 6 splice variants (Bdnf-e1, -e2, -e4, and -e6-/- mice) and found that loss of BDNF from individual Bdnf mRNA variants differentially impacts the complexity of apical and basal arbors in vivo. Consistent with the subcellular localization studies, Bdnf Ex2 and Ex6 transcripts significantly contributed to dendrite morphology in both CA1 and CA3 neurons. While Bdnf-e2-/- mice showed increased branching proximal to the soma in CA1 and CA3 apical arbors, Bdnf-e6-/- mice showed decreased apical and basal dendrite complexity. Analysis of spine morphology on Bdnf-e6-/- CA1 dendrites revealed changes in the percentage of differently sized spines on apical, but not basal, branches. These results provide further evidence that Bdnf splice variants generate a spatial code that mediates the local actions of BDNF in distinct dendritic compartments on structural and functional plasticity.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/genética , Região CA1 Hipocampal/citologia , Região CA3 Hipocampal/citologia , Dendritos/metabolismo , Neurônios/citologia , RNA Mensageiro/genética , Análise de Variância , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Espinhas Dendríticas/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Processamento de Imagem Assistida por Computador , Camundongos , Camundongos Transgênicos , Microscopia Confocal , Regiões Promotoras Genéticas/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
10.
Neuropsychopharmacology ; 41(8): 1943-55, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26585288

RESUMO

Brain-derived neurotrophic factor (BDNF) regulates diverse biological functions ranging from neuronal survival and differentiation during development to synaptic plasticity and cognitive behavior in the adult. BDNF disruption in both rodents and humans is associated with neurobehavioral alterations and psychiatric disorders. A unique feature of Bdnf transcription is regulation by nine individual promoters, which drive expression of variants that encode an identical protein. It is hypothesized that this unique genomic structure may provide flexibility that allows different factors to regulate BDNF signaling in distinct cell types and circuits. This has led to the suggestion that isoforms may regulate specific BDNF-dependent functions; however, little scientific support for this idea exists. We generated four novel mutant mouse lines in which BDNF production from one of the four major promoters (I, II, IV, or VI) is selectively disrupted (Bdnf-e1, -e2, -e4, and -e6 mice) and used a comprehensive comparator approach to determine whether different Bdnf transcripts are associated with specific BDNF-dependent molecular, cellular, and behavioral phenotypes. Bdnf-e1 and -e2 mutant males displayed heightened aggression accompanied by convergent expression changes in specific genes associated with serotonin signaling. In contrast, BDNF-e4 and -e6 mutants were not aggressive but displayed impairments associated with GABAergic gene expression. Moreover, quantifications of BDNF protein in the hypothalamus, prefrontal cortex, and hippocampus revealed that individual Bdnf transcripts make differential, region-specific contributions to total BDNF levels. The results highlight the biological significance of alternative Bdnf transcripts and provide evidence that individual isoforms serve distinct molecular and behavioral functions.


Assuntos
Agressão , Fator Neurotrófico Derivado do Encéfalo/genética , Regiões Promotoras Genéticas , Serotonina/metabolismo , Transdução de Sinais , Animais , Encéfalo/metabolismo , Regulação da Expressão Gênica , Hipocampo/metabolismo , Hipotálamo/metabolismo , Camundongos , Camundongos Transgênicos , Neurônios/metabolismo , Córtex Pré-Frontal/metabolismo , RNA Mensageiro/metabolismo , Ácido gama-Aminobutírico/metabolismo
11.
Mol Neurobiol ; 32(2): 173-202, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16215281

RESUMO

Bipolar disorder is a devastating disease with a lifetime incidence of about 1% in the general population. Suicide is the cause of death in 10 to 15% of patients and in addition to suicide, mood disorders are associated with many other harmful health effects. Mood stabilizers are medications used to treat bipolar disorder. In addition to their therapeutic effects for the treatment of acute manic episodes, mood stabilizers are useful as prophylaxis against future episodes and as adjunctive antidepressant medications. The most established and investigated mood-stabilizing drugs are lithium and valproate but other anticonvulsants (such as carbamazepine and lamotrigine) and antipsychotics are also considered as mood stabilizers. Despite the efficacy of these diverse medications, their mechanisms of action remain, to a great extent, unknown. Lithium's inhibition of some enzymes, such as inositol monophosphatase and glycogen synthase kinase-3, probably results in its mood-stabilizing effects. Valproate may share its anticonvulsant target with its mood-stabilizing target or may act through other mechanisms. It has been shown that lithium, valproate, and/or carbamazepine regulate numerous factors involved in cell survival pathways, including cyclic adenine monophospate response element-binding protein, brain-derived neurotrophic factor, bcl-2, and mitogen-activated protein kinases. These drugs have been suggested to have neurotrophic and neuroprotective properties that ameliorate impairments of cellular plasticity and resilience underlying the pathophysiology of mood disorders. This article also discusses approaches to develop novel treatments specifically for bipolar disorder.


Assuntos
Transtornos do Humor/patologia , Transtornos do Humor/terapia , Plasticidade Neuronal/efeitos dos fármacos , Psicotrópicos/farmacologia , Animais , Quinase 3 da Glicogênio Sintase/metabolismo , Humanos , Mitocôndrias/metabolismo , Plasticidade Neuronal/fisiologia , Psicotrópicos/uso terapêutico , Transdução de Sinais/efeitos dos fármacos
12.
Brain Stimul ; 8(5): 862-7, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26138027

RESUMO

BACKGROUND: Neurogenesis continues throughout life in the hippocampal dentate gyrus. Chronic treatment with monoaminergic antidepressant drugs stimulates hippocampal neurogenesis, and new neurons are required for some antidepressant-like behaviors. Electroconvulsive seizures (ECS), a laboratory model of electroconvulsive therapy (ECT), robustly stimulate hippocampal neurogenesis. HYPOTHESIS: ECS requires newborn neurons to improve behavioral deficits in a mouse neuroendocrine model of depression. METHODS: We utilized immunohistochemistry for doublecortin (DCX), a marker of migrating neuroblasts, to assess the impact of Sham or ECS treatments (1 treatment per day, 7 treatments over 15 days) on hippocampal neurogenesis in animals receiving 6 weeks of either vehicle or chronic corticosterone (CORT) treatment in the drinking water. We conducted tests of anxiety- and depressive-like behavior to investigate the ability of ECS to reverse CORT-induced behavioral deficits. We also determined whether adult neurons are required for the effects of ECS. For these studies we utilized a pharmacogenetic model (hGFAPtk) to conditionally ablate adult born neurons. We then evaluated behavioral indices of depression after Sham or ECS treatments in CORT-treated wild-type animals and CORT-treated animals lacking neurogenesis. RESULTS: ECS is able to rescue CORT-induced behavioral deficits in indices of anxiety- and depressive-like behavior. ECS increases both the number and dendritic complexity of adult-born migrating neuroblasts. The ability of ECS to promote antidepressant-like behavior is blocked in mice lacking adult neurogenesis. CONCLUSION: ECS ameliorates a number of anxiety- and depressive-like behaviors caused by chronic exposure to CORT. ECS requires intact hippocampal neurogenesis for its efficacy in these behavioral indices.


Assuntos
Antidepressivos/farmacologia , Transtorno Depressivo/terapia , Eletroconvulsoterapia , Hipocampo/crescimento & desenvolvimento , Neurogênese , Animais , Antidepressivos/uso terapêutico , Transtorno Depressivo/tratamento farmacológico , Proteína Duplacortina , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Masculino , Camundongos , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/fisiologia
13.
Brain Struct Funct ; 219(3): 1139-48, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-23483239

RESUMO

Following their birth in the adult hippocampal dentate gyrus, newborn progenitor cells migrate into the granule cell layer where they differentiate, mature, and functionally integrate into existing circuitry. The hypothesis that adult hippocampal neurogenesis is physiologically important has gained traction, but the precise role of newborn neurons in hippocampal function remains unclear. We investigated whether loss of new neurons impacts dendrite morphology and glutamate levels in area CA3 of the hippocampus by utilizing a human GFAP promoter-driven thymidine kinase genetic mouse model to conditionally suppress adult neurogenesis. We found that chronic ablation of new neurons induces remodeling in CA3 pyramidal cells and increases stress-induced release of the neurotransmitter glutamate. The ability of persistent impairment of adult neurogenesis to influence hippocampal dendrite morphology and excitatory amino acid neurotransmission has important implications for elucidating newborn neuron function, and in particular, understanding the role of these cells in stress-related excitoxicity.


Assuntos
Hipocampo/metabolismo , Neurogênese/fisiologia , Neurônios/metabolismo , Células Piramidais/metabolismo , Estresse Fisiológico , Envelhecimento , Animais , Animais Recém-Nascidos , Atrofia/tratamento farmacológico , Giro Denteado/patologia , Feminino , Ácido Glutâmico/metabolismo , Hipocampo/crescimento & desenvolvimento , Hipocampo/patologia , Masculino , Camundongos Endogâmicos C57BL , Células Piramidais/crescimento & desenvolvimento
14.
World J Biol Psychiatry ; 14(3): 241-6, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22022845

RESUMO

OBJECTIVES: Increasing evidence indicates that canonical neurotransmitters act as regulatory signals during neuroplasticity. Here, we report that muscarinic cholinergic neurotransmission stimulates differentiation of adult neural stem cells in vitro. METHODS: Adult neural stem cells (ANSC) dissociated from the adult mouse hippocampus were expanded in culture with basic fibroblast growth factor (BFGF) and epidermal growth factor (EGF). RESULTS: Carbachol (CCh), an analog of acetylcholine (ACh) significantly enhanced de novo differentiation into neurons on bFGF- and EGF-deprived stem cells as shown by the percentage of TUJ1 positive cells. By contrast, pirenzepine (PIR), a muscarinic M1 receptor antagonist, reduced the generation of neurons. CONCLUSION: Activation of cholinergic signaling drives the de novo differentiation of uncommitted stem cells into neurons. These effects appear to be predominantly mediated via the muscarinic M1 receptor subtype.


Assuntos
Células-Tronco Adultas/metabolismo , Carbacol/farmacologia , Células-Tronco Neurais/metabolismo , Plasticidade Neuronal/efeitos dos fármacos , Pirenzepina/farmacologia , Receptor Muscarínico M1/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Agonistas Colinérgicos/farmacologia , Fator de Crescimento Epidérmico/metabolismo , Fator 2 de Crescimento de Fibroblastos/metabolismo , Hipocampo/metabolismo , Hipocampo/patologia , Camundongos , Antagonistas Muscarínicos/farmacologia , Transmissão Sináptica/efeitos dos fármacos
15.
Trends Neurosci ; 35(1): 36-46, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22217451

RESUMO

Mood-stabilizing drugs are the most widely prescribed pharmacological treatments for bipolar disorder, a disease characterized by recurrent episodes of mania and depression. Despite extensive clinical utilization, significant questions concerning their mechanisms of action remain. In recent years, a diverse set of molecular and cellular targets of these drugs has been identified. Based on these findings, downstream effects on neural and synaptic plasticity within key circuits have been proposed. Here, we discuss recent data, identify current challenges impeding progress and define areas for future investigation. Further understanding of the primary targets and downstream levels of convergence of mood-stabilizing drugs will guide development of novel therapeutic strategies and help translate discoveries into more effective treatments with less burdensome adverse-effect profiles.


Assuntos
Afeto/efeitos dos fármacos , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Antimaníacos/farmacologia , Antimaníacos/uso terapêutico , Transtorno Bipolar/tratamento farmacológico , Hipocampo/anatomia & histologia , Hipocampo/fisiologia , Hipocampo/fisiopatologia , Humanos , Sistema Hipotálamo-Hipofisário/fisiologia , Receptores de Glucocorticoides/metabolismo
16.
Physiol Behav ; 106(2): 81-6, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22266677

RESUMO

Changes in reproductive hormones, such as estrogen, play a role in mood regulation. The present study examined strain differences (Long-Evans vs. Wistar-Hannover) in the behavioral and biochemical effects of estrogen manipulation. Adult ovariectomized female rats were treated with estradiol, vehicle, or withdrawn from estradiol. The two strains demonstrated differential behavioral responses to short-term estradiol administration in the forced swim test; estradiol induced an antidepressant-like effect in Long-Evans rats but not in Wistar rats. Conversely, withdrawal from estradiol resulted in a depressive-like state in the Wistar rats but not in the Long-Evans rats. Western blot analyses found no differences in estrogen receptors α and ß within the hippocampus or the frontal cortex, two brain areas strongly implicated in affective disorders. These data demonstrate the importance of strain as a variable when interpreting behavioral effects of estrogen.


Assuntos
Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/metabolismo , Estrogênios/fisiologia , Resposta de Imobilidade Tônica/fisiologia , Especificidade da Espécie , Animais , Estradiol/sangue , Estradiol/farmacologia , Estrogênios/farmacologia , Feminino , Lobo Frontal/efeitos dos fármacos , Lobo Frontal/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Resposta de Imobilidade Tônica/efeitos dos fármacos , Ratos , Ratos Long-Evans , Ratos Wistar , Síndrome de Abstinência a Substâncias/psicologia
17.
World J Biol Psychiatry ; 13(4): 240-7, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22409535

RESUMO

OBJECTIVES: Studies on the serotonin transporter (SERT) with regard to neurogenesis and neuroplastic effects on the adult brain are scarce. This is intriguing since neurogenesis is believed to play a decisive role in modulating the effect of selective serotonin reuptake inhibitors (SSRI), which are targeting SERT. METHODS: Therefore, we reviewed the current scientific literature about the influence of serotonin on neurogenesis with particular emphasis on SERT in various settings, both in vivo and in vitro. RESULTS: Experiments using SERT KO (knock-out) animal models showed that SERT does not directly or indirectly influence neurogenesis in vitro, whereas compensatory mechanism seem to participate in vivo. CONCLUSION: At least with regard to adult neural stem cells, the impact of serotonin (5-HT) on neuroplasticity and neurogenesis is not due to SERT-mediated effcts. Instead, serotonergic fine-tuning may be exerted by a number of other different mechanisms including endogenous production of 5-HT in adult neural stem cells, uptake of 5-HT into adult neural stem cells by other monoamine transporters, and actions of the 5-HT1A receptors present on these cells.


Assuntos
Neurogênese/fisiologia , Plasticidade Neuronal/fisiologia , Proteínas da Membrana Plasmática de Transporte de Serotonina/fisiologia , Adulto , Animais , Humanos , Camundongos , Camundongos Knockout
18.
Biol Psychiatry ; 71(1): 75-83, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-21978521

RESUMO

BACKGROUND: Stress is causally associated with anxiety. Although the underlying cellular mechanisms are not well understood, the basal forebrain cholinergic neurons have been implicated in stress response. p75(NTR) is a panneurotrophin receptor expressed almost exclusively in basal forebrain cholinergic neurons in adult brain. This study investigated whether and how p75(NTR), via regulation of the cholinergic system and hippocampal synaptic plasticity, influences stress-related behaviors. METHODS: We used a combination of slice electrophysiology, behavioral analyses, pharmacology, in vivo microdialysis, and neuronal activity mapping to assess the role of p75(NTR) in mood and stress-related behaviors and its underlying cellular and molecular mechanisms. RESULTS: We show that acute stress enables hippocampal long-term depression (LTD) in adult wild-type mice but not in mice lacking p75(NTR). The p75(NTR) mutant mice also exhibit two distinct behavioral impairments: baseline anxiety-like behavior and a deficit in coping with and recovering from stressful situations. Blockade of stress-enabled LTD with a GluA2-derived peptide impaired stress recovery without affecting baseline anxiety. Pharmacological manipulations of cholinergic transmission mimicked the p75(NTR) perturbation in both baseline anxiety and responses to acute stress. Finally, we show evidence of misregulated cholinergic signaling in animals with p75(NTR) deletion. CONCLUSIONS: Our results suggest that loss of p75(NTR) leads to changes in hippocampal cholinergic signaling, which may be involved in regulation of stress-enabled hippocampal LTD and in modulating behaviors related to stress and anxiety.


Assuntos
Acetilcolina/metabolismo , Ansiedade/genética , Hipocampo/fisiopatologia , Depressão Sináptica de Longo Prazo/genética , Receptores de Fator de Crescimento Neural/metabolismo , Estresse Psicológico/genética , Adaptação Psicológica/efeitos dos fármacos , Adaptação Psicológica/fisiologia , Análise de Variância , Animais , Ansiedade/patologia , Ansiedade/fisiopatologia , Biofísica , Colinérgicos/farmacologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Estimulação Elétrica , Comportamento Exploratório/efeitos dos fármacos , Comportamento Exploratório/fisiologia , Hipocampo/efeitos dos fármacos , Técnicas In Vitro , Depressão Sináptica de Longo Prazo/efeitos dos fármacos , Depressão Sináptica de Longo Prazo/fisiologia , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microdiálise , Microinjeções , N-Metilaspartato/farmacologia , Técnicas de Patch-Clamp , Proteínas Proto-Oncogênicas c-fos/metabolismo , Receptores de Fator de Crescimento Neural/deficiência , Estresse Psicológico/patologia , Estresse Psicológico/fisiopatologia , Fatores de Tempo
19.
Mol Brain ; 4: 11, 2011 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-21388527

RESUMO

BACKGROUND: Sleep homeostasis is characterized by a positive correlation between sleep length and intensity with the duration of the prior waking period. A causal role for brain-derived neurotrophic factor (BDNF) in sleep homeostasis has been suggested, but the underlying mechanisms remain unclear. Cortistatin, a neuropeptide expressed primarily in a subset of cortical GABAergic interneurons, is another molecule implicated in sleep homeostasis. RESULTS: We confirmed that sleep deprivation leads to an increase in cortical cortistatin mRNA expression. Disruption of activity-dependent BDNF expression in a genetically modified mouse line impairs both baseline levels of cortistatin mRNA as well as its levels following sleep deprivation. Disruption of activity-dependent BDNF also leads to a decrease in sleep time during the active (dark) phase. CONCLUSION: Our studies suggest that regulation of cortistatin-expressing interneurons by activity-dependent BDNF expression may contribute to regulation of sleep behavior.


Assuntos
Comportamento Animal/fisiologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Interneurônios/metabolismo , Neuropeptídeos/metabolismo , Sono/fisiologia , Animais , Biomarcadores/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Ritmo Circadiano/fisiologia , Eletrochoque , Regulação da Expressão Gênica , Camundongos , Camundongos Endogâmicos C57BL , Neuropeptídeos/genética , Regiões Promotoras Genéticas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Privação do Sono/genética , Privação do Sono/fisiopatologia , Ácido gama-Aminobutírico/metabolismo
20.
Neuropsychopharmacology ; 35(4): 893-903, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20010549

RESUMO

Serotonin (5-HT) and the serotonergic system have recently been indicated as modulators of adult hippocampal neurogenesis. In this study, we evaluated the role of 5-HT on the functional features in neurospheres derived from adult neural stem cells (ANSC). We cultured neurospheres derived from mouse hippocampus in serum-free medium containing epidermal (EGF) and type-2 fibroblast growth factor (FGF2). Under these conditions ANSC expressed both isoforms of tryptophane-hydroxylase (TPH) and produced 5-HT. Blocking TPH function by para-chlorophenylalanine (PCPA) reduced ANSC proliferation, which was rescued by exogenous 5-HT. 5-HT action on ANSC was mediated predominantly by the serotonin receptor subtype 5-HT1A and, to a lesser extent, through the 5-HT2C (receptor) subtype, as shown by selectively antagonizing these receptors. Finally, we documented a 5-HT-induced increase of ANSC migration activity. In summary, we demonstrated a powerful serotonergic impact on ANSC functional features, which was mainly mediated by 5-HT1A receptors.


Assuntos
Células-Tronco Adultas/fisiologia , Diferenciação Celular/fisiologia , Proliferação de Células , Neurônios/metabolismo , Serotonina/deficiência , Células-Tronco Adultas/efeitos dos fármacos , Análise de Variância , Animais , Diferenciação Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Movimento Celular/fisiologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Células Cultivadas , Cromatografia Líquida de Alta Pressão/métodos , Fator de Crescimento Epidérmico/farmacologia , Fator 2 de Crescimento de Fibroblastos/farmacologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Ácido Hidroxi-Indolacético/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Serotonina/farmacologia , Antagonistas da Serotonina/farmacologia , Agonistas do Receptor de Serotonina/farmacologia , Triptofano Hidroxilase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA