Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biol Chem ; 300(5): 107263, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38582451

RESUMO

Synapse formation depends on the coordinated expression and regulation of scaffold proteins. The JNK family kinases play a role in scaffold protein regulation, but the nature of this functional interaction in dendritic spines requires further investigation. Here, using a combination of biochemical methods and live-cell imaging strategies, we show that the dynamics of the synaptic scaffold molecule SAP102 are negatively regulated by JNK inhibition, that SAP102 is a direct phosphorylation target of JNK3, and that SAP102 regulation by JNK is restricted to neurons that harbor mature synapses. We further demonstrate that SAP102 and JNK3 cooperate in the regulated trafficking of kainate receptors to the cell membrane. Specifically, we observe that SAP102, JNK3, and the kainate receptor subunit GluK2 exhibit overlapping expression at synaptic sites and that modulating JNK activity influences the surface expression of the kainate receptor subunit GluK2 in a neuronal context. We also show that SAP102 participates in this process in a JNK-dependent fashion. In summary, our data support a model in which JNK-mediated regulation of SAP102 influences the dynamic trafficking of kainate receptors to postsynaptic sites, and thus shed light on common pathophysiological mechanisms underlying the cognitive developmental defects associated with diverse mutations.


Assuntos
Espinhas Dendríticas , Receptor de GluK2 Cainato , Receptores de Ácido Caínico , Animais , Humanos , Ratos , Membrana Celular/metabolismo , Espinhas Dendríticas/metabolismo , Hipocampo/metabolismo , Hipocampo/citologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Proteína Quinase 10 Ativada por Mitógeno/metabolismo , Proteína Quinase 10 Ativada por Mitógeno/genética , Neurônios/metabolismo , Neuropeptídeos , Fosforilação , Transporte Proteico , Receptores de Ácido Caínico/metabolismo , Receptores de Ácido Caínico/genética , Sinapses/metabolismo , Células Cultivadas
2.
PLoS Biol ; 20(3): e3001503, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35312684

RESUMO

Recent advances in imaging technology have highlighted that scaffold proteins and receptors are arranged in subsynaptic nanodomains. The synaptic membrane-associated guanylate kinase (MAGUK) scaffold protein membrane protein palmitoylated 2 (MPP2) is a component of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor-associated protein complexes and also binds to the synaptic cell adhesion molecule SynCAM 1. Using superresolution imaging, we show that-like SynCAM 1-MPP2 is situated at the periphery of the postsynaptic density (PSD). In order to explore MPP2-associated protein complexes, we used a quantitative comparative proteomics approach and identified multiple γ-aminobutyric acid (GABA)A receptor subunits among novel synaptic MPP2 interactors. In line with a scaffold function for MPP2 in the assembly and/or modulation of intact GABAA receptors, manipulating MPP2 expression had effects on inhibitory synaptic transmission. We further show that GABAA receptors are found together with MPP2 in a subset of dendritic spines and thus highlight MPP2 as a scaffold that serves as an adaptor molecule, linking peripheral synaptic elements critical for inhibitory regulation to central structures at the PSD of glutamatergic synapses.


Assuntos
Proteínas de Membrana , Densidade Pós-Sináptica , Proteínas de Membrana/metabolismo , Densidade Pós-Sináptica/metabolismo , Receptores de AMPA/metabolismo , Receptores de GABA-A , Sinapses/metabolismo
3.
J Cell Biol ; 223(4)2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38252080

RESUMO

The compartmentalization of the plasma membrane (PM) is a fundamental feature of cells. The diffusivity of membrane proteins is significantly lower in biological than in artificial membranes. This is likely due to actin filaments, but assays to prove a direct dependence remain elusive. We recently showed that periodic actin rings in the neuronal axon initial segment (AIS) confine membrane protein motion between them. Still, the local enrichment of ion channels offers an alternative explanation. Here we show, using computational modeling, that in contrast to actin rings, ion channels in the AIS cannot mediate confinement. Furthermore, we show, employing a combinatorial approach of single particle tracking and super-resolution microscopy, that actin rings are close to the PM and that they confine membrane proteins in several neuronal cell types. Finally, we show that actin disruption leads to loss of compartmentalization. Taken together, we here develop a system for the investigation of membrane compartmentalization and show that actin rings compartmentalize the PM.


Assuntos
Actinas , Membrana Celular , Canais Iônicos , Actinas/química , Membrana Celular/química , Canais Iônicos/química , Animais , Ratos , Neurônios , Modelos Químicos
4.
Sci Rep ; 10(1): 5709, 2020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-32235845

RESUMO

Scaffold proteins are responsible for structural organisation within cells; they form complexes with other proteins to facilitate signalling pathways and catalytic reactions. The scaffold protein connector enhancer of kinase suppressor of Ras 2 (CNK2) is predominantly expressed in neural tissues and was recently implicated in X-linked intellectual disability (ID). We have investigated the role of CNK2 in neurons in order to contribute to our understanding of how CNK2 alterations might cause developmental defects, and we have elucidated a functional role for CNK2 in the molecular processes that govern morphology of the postsynaptic density (PSD). We have also identified novel CNK2 interaction partners and explored their functional interdependency with CNK2. We focussed on the novel interaction partner TRAF2- and NCK-interacting kinase TNIK, which is also associated with ID. Both CNK2 and TNIK are expressed in neuronal dendrites and concentrated in dendritic spines, and staining with synaptic markers indicates a clear postsynaptic localisation. Importantly, our data highlight that CNK2 plays a role in directing TNIK subcellular localisation, and in neurons, CNK2 participates in ensuring that this multifunctional kinase is present in the correct place at desirable levels. In summary, our data indicate that CNK2 expression is critical for modulating PSD morphology; moreover, our study highlights that CNK2 functions as a scaffold with the potential to direct the localisation of regulatory proteins within the cell. Importantly, we describe a novel link between CNK2 and the regulatory kinase TNIK, and provide evidence supporting the idea that alterations in CNK2 localisation and expression have the potential to influence the behaviour of TNIK and other important regulatory molecules in neurons.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Espinhas Dendríticas/metabolismo , Neurônios/metabolismo , Densidade Pós-Sináptica/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Linhagem Celular , Cricetulus , Hipocampo/metabolismo , Ratos , Ratos Wistar , Transdução de Sinais/fisiologia , Sinapses/metabolismo
5.
Sci Rep ; 6: 35283, 2016 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-27756895

RESUMO

At neuronal synapses, multiprotein complexes of trans-synaptic adhesion molecules, scaffold proteins and neurotransmitter receptors assemble to essential building blocks required for synapse formation and maintenance. Here we describe a novel role for the membrane-associated guanylate kinase (MAGUK) protein MPP2 (MAGUK p55 subfamily member 2) at synapses of rat central neurons. Through interactions mediated by its C-terminal SH3-GK domain module, MPP2 binds to the abundant postsynaptic scaffold proteins PSD-95 and GKAP and localises to postsynaptic sites in hippocampal neurons. MPP2 also colocalises with the synaptic adhesion molecule SynCAM1. We demonstrate that the SynCAM1 C-terminus interacts directly with the MPP2 PDZ domain and that MPP2 does not interact in this manner with other highly abundant postsynaptic transmembrane proteins. Our results highlight a previously unexplored role for MPP2 at postsynaptic sites as a scaffold that links SynCAM1 cell adhesion molecules to core proteins of the postsynaptic density.


Assuntos
Moléculas de Adesão Celular/genética , Imunoglobulinas/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/genética , Neurônios/metabolismo , Sinapses/metabolismo , Animais , Moléculas de Adesão Celular/metabolismo , Proteína 4 Homóloga a Disks-Large/genética , Proteína 4 Homóloga a Disks-Large/metabolismo , Hipocampo/metabolismo , Imunoglobulinas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Fosforilação , Ligação Proteica/genética , Ratos , Proteínas Associadas SAP90-PSD95/genética , Proteínas Associadas SAP90-PSD95/metabolismo , Sinapses/genética , Domínios de Homologia de src/genética
6.
PLoS One ; 9(12): e114595, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25470280

RESUMO

We here suggest that pigment epithelium-derived factor (PEDF) does not have an effect on lesion size, behavioral outcome, cell proliferation, or cell death after striatal ischemia in the mouse. PEDF is a neurotrophic factor with neuroprotective, antiangiogenic, and antipermeability effects. It influences self-renewal of neural stem cells and proliferation of microglia. We investigated whether intraventricular infusion of PEDF reduces infarct size and cell death, ameliorates behavioral outcome, and influences cell proliferation in the one-hour middle cerebral artery occlusion (MCAO) mouse model of focal cerebral ischemia. C57Bl6/N mice were implanted with PEDF or artificial cerebrospinal fluid (control) osmotic pumps and subjected to 60-minute MCAO 48 hours after pump implantation. They received daily BrdU injections for 7 days after MCAO in order to investigate cell proliferation. Infarct volumes were determined 24 hours after reperfusion using magnetic resonance imaging. We removed the pumps on day 5 and performed behavioral testing between day 7 and 21. Immunohistochemical staining was performed to determine the effect of PEDF on cell proliferation and cell death. Our model produced an ischemic injury confined solely to striatal damage. We detected no reduction in infarct sizes and cell death in PEDF- vs. CSF-infused MCAO mice. Behavioral outcome and cell proliferation did not differ between the groups. However, we cannot exclude that PEDF might work under different conditions in stroke. Further studies will elucidate the effect of PEDF treatment on cell proliferation and behavioral outcome in moderate to severe ischemic injury in the brain.


Assuntos
Proteínas do Olho/administração & dosagem , Infarto da Artéria Cerebral Média/metabolismo , Fatores de Crescimento Neural/administração & dosagem , Fármacos Neuroprotetores/administração & dosagem , Serpinas/administração & dosagem , Animais , Proliferação de Células , Corpo Estriado/patologia , Avaliação Pré-Clínica de Medicamentos , Infarto da Artéria Cerebral Média/patologia , Infarto da Artéria Cerebral Média/psicologia , Masculino , Aprendizagem em Labirinto , Camundongos Endogâmicos C57BL , Recuperação de Função Fisiológica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA