Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
EMBO Rep ; 24(10): e57084, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37691494

RESUMO

Intestinal epithelial cells are covered by the brush border, which consists of densely packed microvilli. The Intermicrovillar Adhesion Complex (IMAC) links the microvilli and is required for proper brush border organization. Whether microvillus crosslinking is involved in the intestinal barrier function or colitis is currently unknown. We investigate the role of microvillus crosslinking in colitis in mice with deletion of the IMAC component CDHR5. Electron microscopy shows pronounced brush border defects in CDHR5-deficient mice. The defects result in severe mucosal damage after exposure to the colitis-inducing agent DSS. DSS increases the permeability of the mucus layer and brings bacteria in direct contact with the disorganized brush border of CDHR5-deficient mice. This correlates with bacterial invasion into the epithelial cell layer which precedes epithelial apoptosis and inflammation. Single-cell RNA sequencing data of patients with ulcerative colitis reveals downregulation of CDHR5 in enterocytes of diseased areas. Our results provide experimental evidence that a combination of microvillus crosslinking defects with increased permeability of the mucus layer sensitizes to inflammatory bowel disease.

2.
Int J Mol Sci ; 25(4)2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38397093

RESUMO

The lung can experience different oxygen concentrations, low as in hypoxia, high as under supplemental oxygen therapy, or oscillating during intermittent hypoxia as in obstructive sleep apnea or intermittent hypoxia/hyperoxia due to cyclic atelectasis in the ventilated patient. This study aimed to characterize the oxygen-condition-specific protein composition of extracellular vesicles (EVs) released from human pulmonary microvascular endothelial cells in vitro to decipher their potential role in biotrauma using quantitative proteomics with bioinformatic evaluation, transmission electron microscopy, flow cytometry, and non-activated thromboelastometry (NATEM). The release of vesicles enriched in markers CD9/CD63/CD81 was enhanced under intermittent hypoxia, strong hyperoxia and intermittent hypoxia/hyperoxia. Particles with exposed phosphatidylserine were increased under intermittent hypoxia. A small portion of vesicles were tissue factor-positive, which was enhanced under intermittent hypoxia and intermittent hypoxia/hyperoxia. EVs from treatment with intermittent hypoxia induced a significant reduction of Clotting Time in NATEM analysis compared to EVs isolated after normoxic exposure, while after intermittent hypoxia/hyperoxia, tissue factor in EVs seems to be inactive. Gene set enrichment analysis of differentially expressed genes revealed that EVs from individual oxygen conditions potentially induce different biological processes such as an inflammatory response under strong hyperoxia and intermittent hypoxia/hyperoxia and enhancement of tumor invasiveness under intermittent hypoxia.


Assuntos
Vesículas Extracelulares , Hiperóxia , Humanos , Oxigênio/farmacologia , Oxigênio/metabolismo , Hiperóxia/metabolismo , Proteoma/metabolismo , Células Endoteliais/patologia , Tromboplastina/metabolismo , Pulmão/patologia , Hipóxia/metabolismo , Vesículas Extracelulares/metabolismo , Endotélio/patologia
3.
Glia ; 71(4): 945-956, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36495059

RESUMO

Signal propagation is the essential function of nerves. Lysophosphatidic acid 18:1 (LPA) allows the selective stimulation of calcium signaling in Schwann cells but not neurons. Here, the time course of slowing and amplitude reduction on compound action potentials due to LPA exposure was observed in myelinated and unmyelinated fibers of the mouse, indicating a clear change of axonal function. Teased nerve fiber imaging showed that Schwann cell activation is also present in axon-attached Schwann cells in freshly isolated peripheral rat nerves. The LPA receptor 1 was primarily localized at the cell extensions in isolated rat Schwann cells, suggesting a role in cell migration. Structural investigation of rat C-fibers demonstrated that LPA leads to an evagination of the axons from their Schwann cells. In A-fibers, the nodes of Ranvier appeared unchanged, but the Schmidt-Lanterman incisures were shortened and myelination reduced. The latter might increase leak current, reducing the potential spread to the next node of Ranvier and explain the changes in conduction velocity. The observed structural changes provide a plausible explanation for the functional changes in myelinated and unmyelinated axons of peripheral nerves and the reported sensory sensations such as itch and pain.


Assuntos
Nervos Periféricos , Células de Schwann , Camundongos , Ratos , Animais , Nervos Periféricos/fisiologia , Células de Schwann/fisiologia , Bainha de Mielina , Fibras Nervosas Mielinizadas/fisiologia , Axônios/fisiologia
4.
Cell Commun Signal ; 21(1): 297, 2023 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-37864211

RESUMO

BACKGROUND: E. coli O83 (Colinfant Newborn) is a Gram-negative (G-) probiotic bacterium used in the clinic. When administered orally, it reduces allergic sensitisation but not allergic asthma. Intranasal administration offers a non-invasive and convenient delivery method. This route bypasses the gastrointestinal tract and provides direct access to the airways, which are the target of asthma prevention. G- bacteria such as E. coli O83 release outer membrane vesicles (OMVs) to communicate with the environment. Here we investigate whether intranasally administered E. coli O83 OMVs (EcO83-OMVs) can reduce allergic airway inflammation in mice. METHODS: EcO83-OMVs were isolated by ultracentrifugation and characterised their number, morphology (shape and size), composition (proteins and lipopolysaccharide; LPS), recognition by innate receptors (using transfected HEK293 cells) and immunomodulatory potential (in naïve splenocytes and bone marrow-derived dendritic cells; BMDCs). Their allergy-preventive effect was investigated in a mouse model of ovalbumin-induced allergic airway inflammation. RESULTS: EcO83-OMVs are spherical nanoparticles with a size of about 110 nm. They contain LPS and protein cargo. We identified a total of 1120 proteins, 136 of which were enriched in OMVs compared to parent bacteria. Proteins from the flagellum dominated. OMVs activated the pattern recognition receptors TLR2/4/5 as well as NOD1 and NOD2. EcO83-OMVs induced the production of pro- and anti-inflammatory cytokines in splenocytes and BMDCs. Intranasal administration of EcO83-OMVs inhibited airway hyperresponsiveness, and decreased airway eosinophilia, Th2 cytokine production and mucus secretion. CONCLUSIONS: We demonstrate for the first time that intranasally administered OMVs from probiotic G- bacteria have an anti-allergic effect. Our study highlights the advantages of OMVs as a safe platform for the prophylactic treatment of allergy. Video Abstract.


Assuntos
Asma , Vesículas Extracelulares , Hipersensibilidade , Probióticos , Humanos , Animais , Camundongos , Escherichia coli , Lipopolissacarídeos , Células HEK293 , Hipersensibilidade/prevenção & controle , Hipersensibilidade/metabolismo , Imunidade Inata , Asma/metabolismo , Inflamação/metabolismo , Vesículas Extracelulares/metabolismo , Probióticos/farmacologia
5.
Int J Mol Sci ; 23(9)2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35563123

RESUMO

A hallmark of thoracic aortic aneurysms (TAA) is the degenerative remodeling of aortic wall, which leads to progressive aortic dilatation and resulting in an increased risk for aortic dissection or rupture. Telocytes (TCs), a distinct type of interstitial cells described in many tissues and organs, were recently observed in the aortic wall, and studies showed the potential regulation of smooth muscle cell (SMC) homeostasis by TC-released shed vesicles. The purpose of the present work was to study the functions of TCs in medial degeneration of TAA. During aneurysmal formation an increase of aortic TCs was identified in human surgical specimens of TAA-patients, compared to healthy thoracic aortic (HTA)-tissue. We found the presence of epithelial progenitor cells in the adventitial layer, which showed increased infiltration in TAA samples. For functional analysis, HTA- and TAA-telocytes were isolated, characterized, and compared by their protein levels, mRNA- and miRNA-expression profiles. We detected TC and TC-released exosomes near SMCs. TAA-TC-exosomes showed a significant increase of the SMC-related dedifferentiation markers KLF-4-, VEGF-A-, and PDGF-A-protein levels, as well as miRNA-expression levels of miR-146a, miR-221 and miR-222. SMCs treated with TAA-TC-exosomes developed a dedifferentiation-phenotype. In conclusion, the study shows for the first time that TCs are involved in development of TAA and could play a crucial role in SMC phenotype switching by release of extracellular vesicles.


Assuntos
Aneurisma da Aorta Torácica , Exossomos , MicroRNAs , Telócitos , Aneurisma da Aorta Torácica/genética , Humanos , MicroRNAs/genética , Miócitos de Músculo Liso
6.
J Cell Mol Med ; 25(20): 9697-9709, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34562312

RESUMO

Telocytes (TCs), a novel interstitial cell entity promoting tissue regeneration, have been described in various tissues. Their role in inter-cellular signalling and tissue remodelling has been reported in almost all human tissues. This study hypothesizes that TC also contributes to tissue remodelling and regeneration of the human thoracic aorta (HTA). The understanding of tissue homeostasis and regenerative potential of the HTA is of high clinical interest as it plays a crucial role in pathogenesis from aortic dilatation to lethal dissection. Therefore, we obtained twenty-five aortic specimens of heart donors during transplantation. The presence of TCs was detected in different layers of aortic tissue and characterized by immunofluorescence and transmission electron microscopy. Further, we cultivated and isolated TCs in highly differentiated form identified by positive staining for CD34 and c-kit. Aortic-derived TC was characterized by the expression of PDGFR-α, PDGFR-ß, CD29/integrin ß-1 and αSMA and the stem cell markers Nanog and KLF-4. Moreover, TC exosomes were isolated and characterized for soluble angiogenic factors by Western blot. CD34+ /c-kit+ TCs shed exosomes containing the soluble factors VEGF-A, KLF-4 and PDGF-A. In summary, TC occurs in the aortic wall. Correspondingly, exosomes, derived from aortic TCs, contain vasculogenesis-relevant proteins. Understanding the regulation of TC-mediated aortic remodelling may be a crucial step towards designing strategies to promote aortic repair and prevent adverse remodelling.


Assuntos
Aorta/citologia , Exossomos/metabolismo , Expressão Gênica , Telócitos/citologia , Telócitos/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Biomarcadores , Micropartículas Derivadas de Células/metabolismo , Micropartículas Derivadas de Células/ultraestrutura , Exossomos/ultraestrutura , Fibroblastos/metabolismo , Imunofluorescência , Humanos , Imuno-Histoquímica , Imunofenotipagem , Fator 4 Semelhante a Kruppel/genética , Fator 4 Semelhante a Kruppel/metabolismo , Miócitos de Músculo Liso/metabolismo , Telócitos/ultraestrutura , Fator A de Crescimento do Endotélio Vascular/metabolismo
7.
Cell Mol Life Sci ; 75(22): 4187-4205, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29934665

RESUMO

The reading of glycan-encoded signals by tissue lectins is considered a major route of the flow of biological information in many (patho)physiological processes. The arising challenge for current research is to proceed from work on a distinct protein to family-wide testing of lectin function. Having previously identified homodimeric galectin-1 and chimera-type galectin-3 as molecular switches in osteoarthritis progression, we here provide proof-of-principle evidence for an intra-network cooperation of galectins with three types of modular architecture. We show that the presence of tandem-repeat-type galectin-8 significantly correlated with cartilage degeneration and that it is secreted by osteoarthritic chondrocytes. Glycan-inhibitable surface binding of galectin-8 to these cells increased gene transcription and the secretion of functional disease markers. The natural variant galectin-8 (F19Y) was less active than the prevalent form. Genome-wide array analysis revealed induction of a pro-degradative/inflammatory gene signature, largely under control of NF-κB signaling. This signature overlapped with respective gene-expression patterns elicited by galectins-1 and -3, but also presented supplementary features. Functional assays with mixtures of galectins that mimic the pathophysiological status unveiled cooperation between the three galectins. Our findings shape the novel concept to consider individual galectins as part of a so far not realized teamwork in osteoarthritis pathogenesis, with relevance beyond this disease.


Assuntos
Galectinas/metabolismo , Osteoartrite/genética , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/metabolismo , Proteínas Sanguíneas , Células Cultivadas , Condrócitos/metabolismo , Progressão da Doença , Feminino , Galectina 1/metabolismo , Galectina 3/metabolismo , Galectinas/genética , Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , NF-kappa B/metabolismo , Osteoartrite/metabolismo , Osteoartrite/patologia , Polimorfismo de Nucleotídeo Único , RNA Mensageiro/metabolismo
9.
Traffic ; 15(6): 613-29, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24612401

RESUMO

The Sec16 homologue in Trypanosoma brucei has been identified and characterized. TbSec16 colocalizes with COPII components at the single endoplasmic reticulum exit site (ERES), which is next to the single Golgi stack in the insect (procyclic) form of this organism. Depletion of TbSec16 reduces the size of the ERES and the Golgi, and slows growth and transport of a secretory marker to the cell surface; conversely, overexpression of TbSec16 increases the size of the ERES and Golgi but has no effect on growth or secretion. Together these data suggest that TbSec16 regulates the size of the ERES and Golgi and this size is set for optimal growth of the organism.


Assuntos
Complexo de Golgi/metabolismo , Proteínas de Protozoários/metabolismo , Trypanosoma brucei brucei/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Transporte Proteico , Proteínas de Protozoários/genética , Via Secretória , Trypanosoma brucei brucei/genética , Proteínas de Transporte Vesicular/genética
10.
J Cell Sci ; 127(Pt 10): 2351-64, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24639465

RESUMO

Phosphoinositides are spatially restricted membrane signaling molecules. Phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2]--a phosphoinositide that is highly enriched in, and present throughout, the plasma membrane--has been implicated in endocytosis. Trypanosoma brucei has one of the highest known rates of endocytosis, a process it uses to evade the immune system. To determine whether phosphoinositides play a role in endocytosis in this organism, we have identified and characterized one of the enzymes that is responsible for generating PI(4,5)P2. Surprisingly, this phosphoinositide was found to be highly concentrated in the flagellar pocket, the only site of endocytosis and exocytosis in this organism. The enzyme (designated TbPIPKA, annotated as Tb927.10.1620) was present at the neck of the pocket, towards the anterior-end of the parasite. Depletion of TbPIPKA led to depletion of PI(4,5)P2 and enlargement of the pocket, the result of impaired endocytosis. Taken together, these data suggest that TbPIPKA and its product PI(4,5)P2 are important for endocytosis and, consequently, for homeostasis of the flagellar pocket.


Assuntos
Endocitose/fisiologia , Flagelos/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Trypanosoma brucei brucei/metabolismo , Membrana Celular/metabolismo , Trypanosoma brucei brucei/enzimologia
11.
Eukaryot Cell ; 14(11): 1081-93, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26318396

RESUMO

The parasite Trypanosoma brucei lives in the bloodstream of infected mammalian hosts, fully exposed to the adaptive immune system. It relies on a very high rate of endocytosis to clear bound antibodies from its cell surface. All endo- and exocytosis occurs at a single site on its plasma membrane, an intracellular invagination termed the flagellar pocket. Coiled around the neck of the flagellar pocket is a multiprotein complex containing the repeat motif protein T. brucei MORN1 (TbMORN1). In this study, the phenotypic effects of TbMORN1 depletion in the mammalian-infective form of T. brucei were analyzed. Depletion of TbMORN1 resulted in a rapid enlargement of the flagellar pocket. Dextran, a polysaccharide marker for fluid phase endocytosis, accumulated inside the enlarged flagellar pocket. Unexpectedly, however, the proteins concanavalin A and bovine serum albumin did not do so, and concanavalin A was instead found to concentrate outside it. This suggests that TbMORN1 may have a role in facilitating the entry of proteins into the flagellar pocket.


Assuntos
Endocitose , Flagelos/metabolismo , Proteínas de Protozoários/metabolismo , Trypanosoma brucei brucei/metabolismo , Estrutura Terciária de Proteína , Proteínas de Protozoários/química , Trypanosoma brucei brucei/ultraestrutura
12.
J Cell Sci ; 125(Pt 3): 673-84, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22331354

RESUMO

Epithelial morphogenesis is directed by interactions with the underlying extracellular matrix. Secretion of collagen and other matrix components requires efficient coat complex II (COPII) vesicle formation at the endoplasmic reticulum. Here, we show that suppression of the outer layer COPII component, Sec13, in zebrafish embryos results in a disorganized gut epithelium. In human intestinal epithelial cells (Caco-2), Sec13 depletion causes defective epithelial polarity and organization on permeable supports. Defects are seen in the ability of cells to adhere to the substrate, form a monolayer and form intercellular junctions. When embedded in a three-dimensional matrix, Sec13-depleted Caco-2 cells form cysts but, unlike controls, are defective in lumen expansion. Incorporation of primary fibroblasts within the three-dimensional culture substantially restores normal morphogenesis. We conclude that efficient COPII-dependent secretion, notably assembly of Sec13-Sec31, is required to drive epithelial morphogenesis in both two- and three-dimensional cultures in vitro, as well as in vivo. Our results provide insight into the role of COPII in epithelial morphogenesis and have implications for the interpretation of epithelial polarity and organization assays in cell culture.


Assuntos
Proteínas de Transporte/fisiologia , Mucosa Intestinal/embriologia , Mucosa Intestinal/metabolismo , Proteínas de Transporte Vesicular/fisiologia , Proteínas de Peixe-Zebra/fisiologia , Animais , Sequência de Bases , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/fisiologia , Células CACO-2 , Proteínas de Transporte/antagonistas & inibidores , Proteínas de Transporte/genética , Técnicas de Cocultura , Matriz Extracelular/fisiologia , Técnicas de Silenciamento de Genes , Humanos , Microscopia Eletrônica de Transmissão , Morfogênese , RNA Interferente Pequeno/genética , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Peixe-Zebra/fisiologia , Proteínas de Peixe-Zebra/antagonistas & inibidores , Proteínas de Peixe-Zebra/genética
14.
Plants (Basel) ; 12(23)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38068675

RESUMO

(1) Background: Lichens, as an important part of the terrestrial ecosystem, attract the attention of various research disciplines. To elucidate their ultrastructure, transmission electron microscopy of resin-embedded samples is indispensable. Since most observations of lichen samples are generated via chemical fixation and processing at room temperature, they lack the rapid immobilization of live processes and are prone to preparation artefacts. To improve their preservation, cryoprocessing was tested in the past, but never widely implemented, not least because of an extremely lengthy protocol. (2) Methods: Here, we introduce an accelerated automated freeze substitution protocol with continuous agitation. Using the example of three lichen species, we demonstrate the preservation of the native state of algal photobionts and mycobionts in association with their extracellular matrix. (3) Results: We bring to attention the extent and the structural variability of the hyphae, the extracellular matrix and numerous crystallized metabolites. Our findings will encourage studies on transformation processes related to the compartmentation of lichen thalli. They include cryopreserved aspects of algal photobionts and observations of putative physiological relevance, such as the arrangement of numerous mitochondria within chloroplast pockets. (4) Conclusions: In summary, we present accelerated freeze substitution as a very useful tool for systematic studies of lichen ultrastructures.

15.
Cells ; 12(9)2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-37174658

RESUMO

Plectin, a highly versatile cytolinker protein, is crucial for myofiber integrity and function. Accordingly, mutations in the human gene (PLEC) cause several rare diseases, denoted as plectinopathies, with most of them associated with progressive muscle weakness. Of several plectin isoforms expressed in skeletal muscle and the heart, P1d is the only isoform expressed exclusively in these tissues. Using high-resolution stimulated emission depletion (STED) microscopy, here we show that plectin is located within the gaps between individual α-actinin-positive Z-disks, recruiting and bridging them to desmin intermediate filaments (Ifs). Loss of plectin in myofibril bundles led to a complete loss of desmin Ifs. Loss of Z-disk-associated plectin isoform P1d led to disorganization of muscle fibers and slower relaxation of myofibrils upon mechanical strain, in line with an observed inhomogeneity of muscle ultrastructure. In addition to binding to α-actinin and thereby providing structural support, P1d forms a scaffolding platform for the chaperone-assisted selective autophagy machinery (CASA) by directly interacting with HSC70 and synpo2. In isoform-specific knockout (P1d-KO) mouse muscle and mechanically stretched plectin-deficient myoblasts, we found high levels of undigested filamin C, a bona fide substrate of CASA. Similarly, subjecting P1d-KO mice to forced swim tests led to accumulation of filamin C aggregates in myofibers, highlighting a specific role of P1d in tension-induced proteolysis activated upon high loads of physical exercise and muscle contraction.


Assuntos
Actinina , Plectina , Animais , Humanos , Camundongos , Desmina/genética , Desmina/metabolismo , Filaminas , Plectina/metabolismo , Isoformas de Proteínas/metabolismo
17.
EMBO Mol Med ; 15(4): e16834, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36916446

RESUMO

Osteogenesis imperfecta (OI) is a genetically and clinically heterogeneous disorder characterized by bone fragility and reduced bone mass generally caused by defects in type I collagen structure or defects in proteins interacting with collagen processing. We identified a homozygous missense mutation in SEC16B in a child with vertebral fractures, leg bowing, short stature, muscular hypotonia, and bone densitometric and histomorphometric features in keeping with OI with distinct ultrastructural features. In line with the putative function of SEC16B as a regulator of trafficking between the ER and the Golgi complex, we showed that patient fibroblasts accumulated type I procollagen in the ER and exhibited a general trafficking defect at the level of the ER. Consequently, patient fibroblasts exhibited ER stress, enhanced autophagosome formation, and higher levels of apoptosis. Transfection of wild-type SEC16B into patient cells rescued the collagen trafficking. Mechanistically, we show that the defect is a consequence of reduced SEC16B expression, rather than due to alterations in protein function. These data suggest SEC16B as a recessive candidate gene for OI.


Assuntos
Colágeno Tipo I , Osteogênese Imperfeita , Criança , Humanos , Colágeno/genética , Colágeno Tipo I/genética , Colágeno Tipo I/química , Colágeno Tipo I/metabolismo , Mutação , Osteogênese Imperfeita/genética , Osteogênese Imperfeita/metabolismo , Estresse do Retículo Endoplasmático
18.
mBio ; 13(2): e0386321, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35357208

RESUMO

Wolbachia are maternally transmitted intracellular bacteria that are not only restricted to the reproductive organs but also found in various somatic tissues of their native hosts. The abundance of the endosymbiont in the soma, usually a dead end for vertically transmitted bacteria, causes a multitude of effects on life history traits of their hosts, which are still not well understood. Thus, deciphering the host-symbiont interactions on a cellular level throughout a host's life cycle is of great importance to understand their homeostatic nature, persistence, and spreading success. Using fluorescent and transmission electron microscopy, we conducted a comprehensive analysis of Wolbachia tropism in soma and germ line of six Drosophila species at the intracellular level during host development. Our data uncovered diagnostic patterns of infections to embryonic primordial germ cells and to particular cells of the soma in three different neotropical Drosophila species that have apparently evolved independently. We further found that restricted patterns of Wolbachia tropism are determined in early embryogenesis via selective autophagy, and their spatially restricted infection patterns are preserved in adult flies. We observed tight interactions of Wolbachia with membranes of the endoplasmic reticulum, which might play a scaffolding role for autophagosome formation and subsequent elimination of the endosymbiont. Finally, by analyzing D. simulans lines transinfected with nonnative Wolbachia, we uncovered that the host genetic background regulates tissue tropism of infection. Our data demonstrate a novel and peculiar mechanism to limit and spatially restrict bacterial infection in the soma during a very early stage of host development. IMPORTANCE All organisms are living in close and intimate interactions with microbes that cause conflicts but also cooperation between both unequal genetic partners due to their different innate interests of primarily enhancing their own fitness. However, stable symbioses often result in homeostatic interaction, named mutualism, by balancing costs and benefits, where both partners profit. Mechanisms that have evolved to balance and stably maintain homeostasis in mutualistic relationships are still quite understudied; one strategy is to "domesticate" potentially beneficial symbionts by actively controlling their replication rate below a critical and, hence, costly threshold, and/or to spatially and temporally restrict their localization in the host organism, which, in the latter case, in its most extreme form, is the formation of a specialized housing organ for the microbe (bacteriome). However, questions remain: how do these mutualistic associations become established in their first place, and what are the mechanisms for symbiont control and restriction in their early stages? Here, we have uncovered an unprecedented symbiont control mechanism in neotropical Drosophila species during early embryogenesis. The fruit fly evolved selective autophagy to restrict and control the proliferation of its intracellular endosymbiont Wolbachia in a defined subset of the stem cells as soon as the host's zygotic genome is activated.


Assuntos
Wolbachia , Animais , Autofagia , Drosophila/microbiologia , Desenvolvimento Embrionário , Retículo Endoplasmático , Wolbachia/genética
19.
Commun Biol ; 5(1): 1047, 2022 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-36184676

RESUMO

A well-orchestrated program of oocyte growth and differentiation results in a developmentally competent oocyte. In late oogenesis, germinal vesicle oocytes (GVOs) undergo chromatin remodeling accompanied by transcriptional silencing from an NSN (non-surrounded nucleolus) to an SN (surrounded nucleolus) chromatin state. By analyzing different cytoplasmic and nuclear characteristics, our results indicate that murine NSN-GVOs transition via an intermediate stage into SN-GVOs in vivo. Interestingly, this transition can also be observed ex vivo, including most characteristics seen in vivo, which allows to analyze this transition process in more detail. The nuclear rearrangements during the transition are accompanied by changes in DNA methylation and Tet enzyme-catalyzed DNA modifications. Early parthenogenetic embryos, derived from NSN-GVOs, show lower DNA methylation levels than SN-derived embryos. Together, our data suggest that a successful NSN-SN transition in oogenesis including proper DNA methylation remodeling is important for the establishment of a developmentally competent oocyte for the beginning of life.


Assuntos
Metilação de DNA , Oogênese , Animais , Cromatina/genética , Cromatina/metabolismo , DNA/metabolismo , Camundongos , Oócitos/metabolismo , Oogênese/genética
20.
Mol Membr Biol ; 27(8): 398-411, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21142873

RESUMO

Trafficking of newly synthesized cargo through the early secretory pathway defines and maintains the intracellular organization of eukaryotic cells as well as the organization of tissues and organs. The importance of this pathway is underlined by the increasing number of mutations in key components of the ER export machinery that are causative of a diversity of human diseases. Here we discuss the molecular mechanisms that dictate cargo selection during vesicle budding. While, in vitro reconstitution assays, unicellular organisms such as budding yeast, and mammalian cell culture still have much to offer in terms of gaining a full understanding of the molecular basis for secretory cargo export, such assays have to date been limited to analysis of smaller, freely diffusible cargoes. The export of large macromolecular complexes from the ER such as collagens (up to 300 nm) or lipoproteins (~500 nm) presents a clear problem in terms of maintaining both selectivity and efficiency of export. It has also become clear that in order to translate our knowledge of the molecular basis for ER export to a full understanding of the implications for normal development and disease progression, the use of metazoan models is essential. Combined, these approaches are now starting to shed light not only on the mechanisms of macromolecular cargo export from the ER but also reveal the implications of failure of this process to human development and disease.


Assuntos
Retículo Endoplasmático/metabolismo , Animais , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Humanos , Transporte Proteico , Via Secretória
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA