Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 249
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 184(20): 5089-5106.e21, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34555357

RESUMO

Microglia are the CNS resident immune cells that react to misfolded proteins through pattern recognition receptor ligation and activation of inflammatory pathways. Here, we studied how microglia handle and cope with α-synuclein (α-syn) fibrils and their clearance. We found that microglia exposed to α-syn establish a cellular network through the formation of F-actin-dependent intercellular connections, which transfer α-syn from overloaded microglia to neighboring naive microglia where the α-syn cargo got rapidly and effectively degraded. Lowering the α-syn burden attenuated the inflammatory profile of microglia and improved their survival. This degradation strategy was compromised in cells carrying the LRRK2 G2019S mutation. We confirmed the intercellular transfer of α-syn assemblies in microglia using organotypic slice cultures, 2-photon microscopy, and neuropathology of patients. Together, these data identify a mechanism by which microglia create an "on-demand" functional network in order to improve pathogenic α-syn clearance.


Assuntos
Estruturas da Membrana Celular/metabolismo , Microglia/metabolismo , Proteólise , alfa-Sinucleína/metabolismo , Actinas/metabolismo , Idoso , Idoso de 80 Anos ou mais , Animais , Apoptose , Citoesqueleto/metabolismo , Regulação para Baixo , Feminino , Humanos , Inflamação/genética , Inflamação/patologia , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Microglia/patologia , Microglia/ultraestrutura , Mitocôndrias/metabolismo , Nanotubos , Agregados Proteicos , Espécies Reativas de Oxigênio/metabolismo , Transcriptoma/genética
2.
Nat Immunol ; 24(6): 979-990, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37188942

RESUMO

Antiviral CD8+ T cell immunity depends on the integration of various contextual cues, but how antigen-presenting cells (APCs) consolidate these signals for decoding by T cells remains unclear. Here, we describe gradual interferon-α/interferon-ß (IFNα/ß)-induced transcriptional adaptations that endow APCs with the capacity to rapidly activate the transcriptional regulators p65, IRF1 and FOS after CD4+ T cell-mediated CD40 stimulation. While these responses operate through broadly used signaling components, they induce a unique set of co-stimulatory molecules and soluble mediators that cannot be elicited by IFNα/ß or CD40 alone. These responses are critical for the acquisition of antiviral CD8+ T cell effector function, and their activity in APCs from individuals infected with severe acute respiratory syndrome coronavirus 2 correlates with milder disease. These observations uncover a sequential integration process whereby APCs rely on CD4+ T cells to select the innate circuits that guide antiviral CD8+ T cell responses.


Assuntos
Antivirais , COVID-19 , Humanos , Calibragem , Células Apresentadoras de Antígenos , Linfócitos T CD8-Positivos , Antígenos CD40 , Interferon-alfa , Linfócitos T CD4-Positivos
3.
Immunity ; 54(11): 2650-2669.e14, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34592166

RESUMO

Longitudinal analyses of the innate immune system, including the earliest time points, are essential to understand the immunopathogenesis and clinical course of coronavirus disease (COVID-19). Here, we performed a detailed characterization of natural killer (NK) cells in 205 patients (403 samples; days 2 to 41 after symptom onset) from four independent cohorts using single-cell transcriptomics and proteomics together with functional studies. We found elevated interferon (IFN)-α plasma levels in early severe COVD-19 alongside increased NK cell expression of IFN-stimulated genes (ISGs) and genes involved in IFN-α signaling, while upregulation of tumor necrosis factor (TNF)-induced genes was observed in moderate diseases. NK cells exert anti-SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) activity but are functionally impaired in severe COVID-19. Further, NK cell dysfunction may be relevant for the development of fibrotic lung disease in severe COVID-19, as NK cells exhibited impaired anti-fibrotic activity. Our study indicates preferential IFN-α and TNF responses in severe and moderate COVID-19, respectively, and associates a prolonged IFN-α-induced NK cell response with poorer disease outcome.


Assuntos
COVID-19/imunologia , Interferon-alfa/imunologia , Células Matadoras Naturais/imunologia , SARS-CoV-2/imunologia , Fator de Necrose Tumoral alfa/metabolismo , Sequência de Bases , Humanos , Imunidade Inata/imunologia , Inflamação/imunologia , Interferon-alfa/sangue , Fibrose Pulmonar/patologia , RNA-Seq , Índice de Gravidade de Doença , Transcriptoma/genética , Reino Unido , Estados Unidos
4.
Immunity ; 51(6): 997-1011.e7, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31851905

RESUMO

Toll-like receptor (TLR) activation induces inflammatory responses in macrophages by activating temporally defined transcriptional cascades. Whether concurrent changes in the cellular metabolism that occur upon TLR activation influence the quality of the transcriptional responses remains unknown. Here, we investigated how macrophages adopt their metabolism early after activation to regulate TLR-inducible gene induction. Shortly after TLR4 activation, macrophages increased glycolysis and tricarboxylic acid (TCA) cycle volume. Metabolic tracing studies revealed that TLR signaling redirected metabolic fluxes to generate acetyl-Coenzyme A (CoA) from glucose resulting in augmented histone acetylation. Signaling through the adaptor proteins MyD88 and TRIF resulted in activation of ATP-citrate lyase, which in turn facilitated the induction of distinct LPS-inducible gene sets. We postulate that metabolic licensing of histone acetylation provides another layer of control that serves to fine-tune transcriptional responses downstream of TLR activation. Our work highlights the potential of targeting the metabolic-epigenetic axis in inflammatory settings.


Assuntos
ATP Citrato (pro-S)-Liase/metabolismo , Acetilcoenzima A/metabolismo , Histonas/metabolismo , Macrófagos/metabolismo , Receptor 4 Toll-Like/metabolismo , Acetilação , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Ciclo do Ácido Cítrico/fisiologia , Glicólise/fisiologia , Humanos , Lipopolissacarídeos/metabolismo , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Transdução de Sinais , Transcrição Gênica/genética
5.
Immunity ; 50(5): 1232-1248.e14, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-31027998

RESUMO

Regulatory T cells (Treg cells) are important for preventing autoimmunity and maintaining tissue homeostasis, but whether Treg cells can adopt tissue- or immune-context-specific suppressive mechanisms is unclear. Here, we found that the enzyme hydroxyprostaglandin dehydrogenase (HPGD), which catabolizes prostaglandin E2 (PGE2) into the metabolite 15-keto PGE2, was highly expressed in Treg cells, particularly those in visceral adipose tissue (VAT). Nuclear receptor peroxisome proliferator-activated receptor-γ (PPARγ)-induced HPGD expression in VAT Treg cells, and consequential Treg-cell-mediated generation of 15-keto PGE2 suppressed conventional T cell activation and proliferation. Conditional deletion of Hpgd in mouse Treg cells resulted in the accumulation of functionally impaired Treg cells specifically in VAT, causing local inflammation and systemic insulin resistance. Consistent with this mechanism, humans with type 2 diabetes showed decreased HPGD expression in Treg cells. These data indicate that HPGD-mediated suppression is a tissue- and context-dependent suppressive mechanism used by Treg cells to maintain adipose tissue homeostasis.


Assuntos
Dinoprostona/análogos & derivados , Dinoprostona/metabolismo , Hidroxiprostaglandina Desidrogenases/metabolismo , Gordura Intra-Abdominal/imunologia , Linfócitos T Reguladores/enzimologia , Linfócitos T Reguladores/imunologia , Células 3T3 , Animais , Linhagem Celular , Diabetes Mellitus Tipo 2/metabolismo , Células HEK293 , Homeostase/imunologia , Humanos , Hidroxiprostaglandina Desidrogenases/genética , Resistência à Insulina/genética , Gordura Intra-Abdominal/citologia , Células Jurkat , Ativação Linfocitária/imunologia , Masculino , Camundongos , Camundongos Knockout , Fator de Transcrição STAT5/metabolismo
6.
Immunity ; 48(5): 911-922.e7, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29768176

RESUMO

Unc-93 homolog B1 (UNC93B1) is a key regulator of nucleic acid (NA)-sensing Toll-like receptors (TLRs). Loss of NA-sensing TLR responses in UNC93B1-deficient patients facilitates Herpes simplex virus type 1 (HSV-1) encephalitis. UNC93B1 is thought to guide NA-sensing TLRs from the endoplasmic reticulum (ER) to their respective endosomal signaling compartments and to guide the flagellin receptor TLR5 to the cell surface, raising the question of how UNC93B1 mediates differential TLR trafficking. Here, we report that UNC93B1 regulates a step upstream of the differential TLR trafficking process. We discovered that UNC93B1 deficiency resulted in near-complete loss of TLR3 and TLR7 proteins in primary splenic mouse dendritic cells and macrophages, showing that UNC93B1 is critical for maintaining TLR expression. Notably, expression of an ER-retained UNC93B1 version was sufficient to stabilize TLRs and largely restore endosomal TLR trafficking and activity. These data are critical for an understanding of how UNC93B1 can regulate the function of a broad subset of TLRs.


Assuntos
Endossomos/imunologia , Proteínas de Membrana Transportadoras/imunologia , Chaperonas Moleculares/imunologia , Receptores Toll-Like/imunologia , Animais , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Retículo Endoplasmático/imunologia , Retículo Endoplasmático/metabolismo , Endossomos/metabolismo , Células HEK293 , Humanos , Macrófagos/imunologia , Macrófagos/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Estabilidade Proteica , Transporte Proteico/imunologia , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Células THP-1 , Receptores Toll-Like/genética , Receptores Toll-Like/metabolismo
7.
Nat Immunol ; 15(2): 152-60, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24317040

RESUMO

High-density lipoprotein (HDL) mediates reverse cholesterol transport and is known to be protective against atherosclerosis. In addition, HDL has potent anti-inflammatory properties that may be critical for protection against other inflammatory diseases. The molecular mechanisms of how HDL can modulate inflammation, particularly in immune cells such as macrophages, remain poorly understood. Here we identify the transcriptional regulator ATF3, as an HDL-inducible target gene in macrophages that downregulates the expression of Toll-like receptor (TLR)-induced proinflammatory cytokines. The protective effects of HDL against TLR-induced inflammation were fully dependent on ATF3 in vitro and in vivo. Our findings may explain the broad anti-inflammatory and metabolic actions of HDL and provide the basis for predicting the success of new HDL-based therapies.


Assuntos
Fator 3 Ativador da Transcrição/metabolismo , Anti-Inflamatórios não Esteroides/uso terapêutico , Aterosclerose/terapia , Colesterol/metabolismo , Inflamação/terapia , Lipoproteínas HDL/uso terapêutico , Macrófagos/efeitos dos fármacos , Fator 3 Ativador da Transcrição/genética , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Células Cultivadas , Imunoprecipitação da Cromatina , Citocinas/metabolismo , Feminino , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lipoproteínas HDL/farmacologia , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Biologia de Sistemas , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/imunologia
8.
Immunity ; 47(6): 1051-1066.e12, 2017 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-29262348

RESUMO

Human in vitro generated monocyte-derived dendritic cells (moDCs) and macrophages are used clinically, e.g., to induce immunity against cancer. However, their physiological counterparts, ontogeny, transcriptional regulation, and heterogeneity remains largely unknown, hampering their clinical use. High-dimensional techniques were used to elucidate transcriptional, phenotypic, and functional differences between human in vivo and in vitro generated mononuclear phagocytes to facilitate their full potential in the clinic. We demonstrate that monocytes differentiated by macrophage colony-stimulating factor (M-CSF) or granulocyte macrophage colony-stimulating factor (GM-CSF) resembled in vivo inflammatory macrophages, while moDCs resembled in vivo inflammatory DCs. Moreover, differentiated monocytes presented with profound transcriptomic, phenotypic, and functional differences. Monocytes integrated GM-CSF and IL-4 stimulation combinatorically and temporally, resulting in a mode- and time-dependent differentiation relying on NCOR2. Finally, moDCs are phenotypically heterogeneous and therefore necessitate the use of high-dimensional phenotyping to open new possibilities for better clinical tailoring of these cellular therapies.


Assuntos
Células Dendríticas/imunologia , Interleucina-4/imunologia , Macrófagos/imunologia , Monócitos/imunologia , Correpressor 2 de Receptor Nuclear/imunologia , Transdução de Sinais/imunologia , Diferenciação Celular , Linhagem da Célula , Células Dendríticas/citologia , Células Dendríticas/efeitos dos fármacos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Humanos , Imunofenotipagem , Interleucina-4/genética , Interleucina-4/farmacologia , Ativação de Macrófagos , Fator Estimulador de Colônias de Macrófagos/farmacologia , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Monócitos/citologia , Monócitos/efeitos dos fármacos , Correpressor 2 de Receptor Nuclear/genética , Cultura Primária de Células , Fatores de Tempo , Transcrição Gênica
9.
Nature ; 575(7784): 669-673, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31748742

RESUMO

Alzheimer's disease is characterized by the accumulation of amyloid-beta in plaques, aggregation of hyperphosphorylated tau in neurofibrillary tangles and neuroinflammation, together resulting in neurodegeneration and cognitive decline1. The NLRP3 inflammasome assembles inside of microglia on activation, leading to increased cleavage and activity of caspase-1 and downstream interleukin-1ß release2. Although the NLRP3 inflammasome has been shown to be essential for the development and progression of amyloid-beta pathology in mice3, the precise effect on tau pathology remains unknown. Here we show that loss of NLRP3 inflammasome function reduced tau hyperphosphorylation and aggregation by regulating tau kinases and phosphatases. Tau activated the NLRP3 inflammasome and intracerebral injection of fibrillar amyloid-beta-containing brain homogenates induced tau pathology in an NLRP3-dependent manner. These data identify an important role of microglia and NLRP3 inflammasome activation in the pathogenesis of tauopathies and support the amyloid-cascade hypothesis in Alzheimer's disease, demonstrating that neurofibrillary tangles develop downstream of amyloid-beta-induced microglial activation.


Assuntos
Inflamassomos/metabolismo , Microglia/patologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas tau/metabolismo , Animais , Quinase 5 Dependente de Ciclina/metabolismo , Regulação da Expressão Gênica/genética , Humanos , Inflamassomos/genética , Camundongos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Fosforilação , Agregação Patológica de Proteínas/fisiopatologia , Proteínas tau/genética
10.
Ann Surg ; 279(2): 246-257, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37450703

RESUMO

OBJECTIVE: Develop an ordinal Desirability of Outcome Ranking (DOOR) for surgical outcomes to examine complex associations of Social Determinants of Health. BACKGROUND: Studies focused on single or binary composite outcomes may not detect health disparities. METHODS: Three health care system cohort study using NSQIP (2013-2019) linked with EHR and risk-adjusted for frailty, preoperative acute serious conditions (PASC), case status and operative stress assessing associations of multilevel Social Determinants of Health of race/ethnicity, insurance type (Private 13,957; Medicare 15,198; Medicaid 2835; Uninsured 2963) and Area Deprivation Index (ADI) on DOOR and the binary Textbook Outcomes (TO). RESULTS: Patients living in highly deprived neighborhoods (ADI>85) had higher odds of PASC [adjusted odds ratio (aOR)=1.13, CI=1.02-1.25, P <0.001] and urgent/emergent cases (aOR=1.23, CI=1.16-1.31, P <0.001). Increased odds of higher/less desirable DOOR scores were associated with patients identifying as Black versus White and on Medicare, Medicaid or Uninsured versus Private insurance. Patients with ADI>85 had lower odds of TO (aOR=0.91, CI=0.85-0.97, P =0.006) until adjusting for insurance. In contrast, patients with ADI>85 had increased odds of higher DOOR (aOR=1.07, CI=1.01-1.14, P <0.021) after adjusting for insurance but similar odds after adjusting for PASC and urgent/emergent cases. CONCLUSIONS: DOOR revealed complex interactions between race/ethnicity, insurance type and neighborhood deprivation. ADI>85 was associated with higher odds of worse DOOR outcomes while TO failed to capture the effect of ADI. Our results suggest that presentation acuity is a critical determinant of worse outcomes in patients in highly deprived neighborhoods and without insurance. Including risk adjustment for living in deprived neighborhoods and urgent/emergent surgeries could improve the accuracy of quality metrics.


Assuntos
Etnicidade , Medicare , Idoso , Humanos , Estados Unidos , Estudos de Coortes , Cobertura do Seguro , Medicaid , Estudos Retrospectivos
11.
Glob Chang Biol ; 30(1): e17066, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38273563

RESUMO

Groundwater is a vital ecosystem of the global water cycle, hosting unique biodiversity and providing essential services to societies. Despite being the largest unfrozen freshwater resource, in a period of depletion by extraction and pollution, groundwater environments have been repeatedly overlooked in global biodiversity conservation agendas. Disregarding the importance of groundwater as an ecosystem ignores its critical role in preserving surface biomes. To foster timely global conservation of groundwater, we propose elevating the concept of keystone species into the realm of ecosystems, claiming groundwater as a keystone ecosystem that influences the integrity of many dependent ecosystems. Our global analysis shows that over half of land surface areas (52.6%) has a medium-to-high interaction with groundwater, reaching up to 74.9% when deserts and high mountains are excluded. We postulate that the intrinsic transboundary features of groundwater are critical for shifting perspectives towards more holistic approaches in aquatic ecology and beyond. Furthermore, we propose eight key themes to develop a science-policy integrated groundwater conservation agenda. Given ecosystems above and below the ground intersect at many levels, considering groundwater as an essential component of planetary health is pivotal to reduce biodiversity loss and buffer against climate change.


Assuntos
Ecossistema , Água Subterrânea , Biodiversidade , Água Doce , Poluição Ambiental
12.
Mol Psychiatry ; 28(4): 1527-1544, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36717740

RESUMO

The RhoGEF TRIO is known to play a major role in neuronal development by controlling actin cytoskeleton remodeling, primarily through the activation of the RAC1 GTPase. Numerous de novo mutations in the TRIO gene have been identified in individuals with neurodevelopmental disorders (NDDs). We have previously established the first phenotype/genotype correlation in TRIO-associated diseases, with striking correlation between the clinical features of the individuals and the opposite modulation of RAC1 activity by TRIO variants targeting different domains. The mutations hyperactivating RAC1 are of particular interest, as they are recurrently found in patients and are associated with a severe form of NDD and macrocephaly, indicating their importance in the etiology of the disease. Yet, it remains unknown how these pathogenic TRIO variants disrupt TRIO activity at a molecular level and how they affect neurodevelopmental processes such as axon outgrowth or guidance. Here we report an additional cohort of individuals carrying a pathogenic TRIO variant that reinforces our initial phenotype/genotype correlation. More importantly, by performing conformation predictions coupled to biochemical validation, we propose a model whereby TRIO is inhibited by an intramolecular fold and NDD-associated variants relieve this inhibition, leading to RAC1 hyperactivation. Moreover, we show that in cultured primary neurons and in the zebrafish developmental model, these gain-of-function variants differentially affect axon outgrowth and branching in vitro and in vivo, as compared to loss-of-function TRIO variants. In summary, by combining clinical, molecular, cellular and in vivo data, we provide compelling new evidence for the pathogenicity of novel genetic variants targeting the TRIO gene in NDDs. We report a novel mechanism whereby the fine-tuned regulation of TRIO activity is critical for proper neuronal development and is disrupted by pathogenic mutations.


Assuntos
Orientação de Axônios , Transtornos do Neurodesenvolvimento , Animais , Transtornos do Neurodesenvolvimento/genética , Neurônios , Fatores de Troca de Nucleotídeo Guanina Rho , Peixe-Zebra , Humanos
13.
J Surg Res ; 300: 514-525, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38875950

RESUMO

INTRODUCTION: Veterans Affairs Surgical Quality Improvement Program (VASQIP) benchmarking algorithms helped the Veterans Health Administration (VHA) reduce postoperative mortality. Despite calls to consider social risk factors, these algorithms do not adjust for social determinants of health (SDoH) or account for services fragmented between the VHA and the private sector. This investigation examines how the addition of SDoH change model performance and quantifies associations between SDoH and 30-d postoperative mortality. METHODS: VASQIP (2013-2019) cohort study in patients ≥65 y old with 2-30-d inpatient stays. VASQIP was linked to other VHA and Medicare/Medicaid data. 30-d postoperative mortality was examined using multivariable logistic regression models, adjusting first for clinical variables, then adding SDoH. RESULTS: In adjusted analyses of 93,644 inpatient cases (97.7% male, 79.7% non-Hispanic White), higher proportions of non-veterans affairs care (adjusted odds ratio [aOR] = 1.02, 95% CI = 1.01-1.04) and living in highly deprived areas (aOR = 1.15, 95% CI = 1.02-1.29) were associated with increased postoperative mortality. Black race (aOR = 0.77, CI = 0.68-0.88) and rurality (aOR = 0.87, CI = 0.79-0.96) were associated with lower postoperative mortality. Adding SDoH to models with only clinical variables did not improve discrimination (c = 0.836 versus c = 0.835). CONCLUSIONS: Postoperative mortality is worse among Veterans receiving more health care outside the VA and living in highly deprived neighborhoods. However, adjusting for SDoH is unlikely to improve existing mortality-benchmarking models. Reduction efforts for postoperative mortality could focus on alleviating care fragmentation and designing care pathways that consider area deprivation. The adjusted survival advantage for rural and Black Veterans may be of interest to private sector hospitals as they attempt to alleviate enduring health-care disparities.


Assuntos
Determinantes Sociais da Saúde , Veteranos , Humanos , Idoso , Masculino , Feminino , Estados Unidos/epidemiologia , Idoso de 80 Anos ou mais , Veteranos/estatística & dados numéricos , United States Department of Veterans Affairs/estatística & dados numéricos , United States Department of Veterans Affairs/organização & administração , Fatores de Risco , Melhoria de Qualidade , Complicações Pós-Operatórias/mortalidade , Complicações Pós-Operatórias/epidemiologia
14.
Mol Biol Rep ; 51(1): 342, 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38400997

RESUMO

Myeloid cells play a vital role in innate immune responses as they recognize and phagocytose pathogens like viruses, present antigens, produce cytokines, recruit other immune cells to combat infections, and contribute to the attenuation of immune responses to restore homeostasis. Signal integration by pathogen recognition receptors enables myeloid cells to adapt their functions by a network of transcription factors and chromatin remodelers. This review provides a brief overview of the subtypes of myeloid cells and the main epigenetic regulation mechanisms. Special focus is placed on the epigenomic alterations in viral nucleic acids of HIV and SARS-CoV-2 along with the epigenetic changes in the host's myeloid cell compartment. These changes are important as they lead to immune suppression and promote the progression of the disease. Finally, we highlight some promising examples of 'epidrugs' that modulate the epigenome of immune cells and could be used as therapeutics for viral infections.


Assuntos
COVID-19 , Infecções por HIV , Humanos , COVID-19/genética , SARS-CoV-2 , Epigênese Genética , Células Mieloides , Infecções por HIV/genética
15.
Mol Biol Rep ; 51(1): 343, 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38400845

RESUMO

The consumption of processed food is on the rise leading to huge intake of excess dietary salt, which strongly correlates with development of hypertension, often leading to cardiovascular diseases such as stroke and heart attack, as well as activation of the immune system. The effect of salt on macrophages is especially interesting as they are able to sense high sodium levels in tissues leading to transcriptional changes. In the skin, macrophages were shown to influence lymphatic vessel growth which, in turn, enables the transport of excess salt and thereby prevents the development of high blood pressure. Furthermore, salt storage in the skin has been linked to the onset of pro-inflammatory effector functions of macrophages in pathogen defence. However, there is only little known about the mechanisms which are involved in changing macrophage function to salt exposure. Here, we characterize the response of macrophages to excess salt both in vitro and in vivo. Our results validate and strengthen the notion that macrophages exhibit chemotactic migration in response to salt gradients in vitro. Furthermore, we demonstrate a reduction in phagocytosis and efferocytosis following acute salt challenge in vitro. While acute exposure to a high-salt diet in vivo has a less pronounced impact on macrophage core functions such as phagocytosis, our data indicate that prolonged salt challenge may exert a distinct effect on the function of macrophages. These findings suggest a potential role for excessive salt sensing by macrophages in the manifestation of diseases related to high-salt diets and explicitly highlight the need for in vivo work to decipher the physiologically relevant impact of excess salt on tissue and cell function.


Assuntos
Hipertensão , Cloreto de Sódio na Dieta , Humanos , Macrófagos , Cloreto de Sódio , Fagocitose
16.
J Hepatol ; 79(1): 150-166, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36870611

RESUMO

BACKGROUND & AIMS: Patients with chronic liver disease (CLD), including cirrhosis, are at increased risk of intractable viral infections and are hyporesponsive to vaccination. Hallmarks of CLD and cirrhosis include microbial translocation and elevated levels of type I interferon (IFN-I). We aimed to investigate the relevance of microbiota-induced IFN-I in the impaired adaptive immune responses observed in CLD. METHODS: We combined bile duct ligation (BDL) and carbon tetrachloride (CCl4) models of liver injury with vaccination or lymphocytic choriomeningitis virus infection in transgenic mice lacking IFN-I in myeloid cells (LysM-Cre IFNARflox/flox), IFNAR-induced IL-10 (MX1-Cre IL10flox/flox) or IL-10R in T cells (CD4-DN IL-10R). Key pathways were blocked in vivo with specific antibodies (anti-IFNAR and anti-IL10R). We assessed T-cell responses and antibody titers after HBV and SARS-CoV-2 vaccinations in patients with CLD and healthy individuals in a proof-of-concept clinical study. RESULTS: We demonstrate that BDL- and CCL4-induced prolonged liver injury leads to impaired T-cell responses to vaccination and viral infection in mice, subsequently leading to persistent infection. We observed a similarly defective T-cell response to vaccination in patients with cirrhosis. Innate sensing of translocated gut microbiota induced IFN-I signaling in hepatic myeloid cells that triggered excessive IL-10 production upon viral infection. IL-10R signaling in antigen-specific T cells rendered them dysfunctional. Antibiotic treatment and inhibition of IFNAR or IL-10Ra restored antiviral immunity without detectable immune pathology in mice. Notably, IL-10Ra blockade restored the functional phenotype of T cells from vaccinated patients with cirrhosis. CONCLUSION: Innate sensing of translocated microbiota induces IFN-/IL-10 expression, which drives the loss of systemic T-cell immunity during prolonged liver injury. IMPACT AND IMPLICATIONS: Chronic liver injury and cirrhosis are associated with enhanced susceptibility to viral infections and vaccine hyporesponsiveness. Using different preclinical animal models and patient samples, we identified that impaired T-cell immunity in BDL- and CCL4-induced prolonged liver injury is driven by sequential events involving microbial translocation, IFN signaling leading to myeloid cell-induced IL-10 expression, and IL-10 signaling in antigen-specific T cells. Given the absence of immune pathology after interference with IL-10R, our study highlights a potential novel target to reconstitute T-cell immunity in patients with CLD that can be explored in future clinical studies.


Assuntos
COVID-19 , Interferon Tipo I , Camundongos , Animais , Interleucina-10 , SARS-CoV-2 , Camundongos Transgênicos , Cirrose Hepática , Camundongos Endogâmicos C57BL
17.
Am J Hum Genet ; 106(3): 338-355, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-32109419

RESUMO

The Rho-guanine nucleotide exchange factor (RhoGEF) TRIO acts as a key regulator of neuronal migration, axonal outgrowth, axon guidance, and synaptogenesis by activating the GTPase RAC1 and modulating actin cytoskeleton remodeling. Pathogenic variants in TRIO are associated with neurodevelopmental diseases, including intellectual disability (ID) and autism spectrum disorders (ASD). Here, we report the largest international cohort of 24 individuals with confirmed pathogenic missense or nonsense variants in TRIO. The nonsense mutations are spread along the TRIO sequence, and affected individuals show variable neurodevelopmental phenotypes. In contrast, missense variants cluster into two mutational hotspots in the TRIO sequence, one in the seventh spectrin repeat and one in the RAC1-activating GEFD1. Although all individuals in this cohort present with developmental delay and a neuro-behavioral phenotype, individuals with a pathogenic variant in the seventh spectrin repeat have a more severe ID associated with macrocephaly than do most individuals with GEFD1 variants, who display milder ID and microcephaly. Functional studies show that the spectrin and GEFD1 variants cause a TRIO-mediated hyper- or hypo-activation of RAC1, respectively, and we observe a striking correlation between RAC1 activation levels and the head size of the affected individuals. In addition, truncations in TRIO GEFD1 in the vertebrate model X. tropicalis induce defects that are concordant with the human phenotype. This work demonstrates distinct clinical and molecular disorders clustering in the GEFD1 and seventh spectrin repeat domains and highlights the importance of tight control of TRIO-RAC1 signaling in neuronal development.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/genética , Mutação , Transtornos do Neurodesenvolvimento/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas rac1 de Ligação ao GTP/metabolismo , Sequência de Aminoácidos , Estudos de Coortes , Feminino , Fatores de Troca do Nucleotídeo Guanina/química , Células HEK293 , Humanos , Masculino , Fenótipo , Proteínas Serina-Treonina Quinases/química , Homologia de Sequência de Aminoácidos
18.
Basic Res Cardiol ; 118(1): 6, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36723728

RESUMO

Aortic valve stenosis (AS) development is driven by distinct molecular and cellular mechanisms which include inflammatory pathways. Toll-like-receptor-3 (TLR3) is a lysosomal pattern-recognition receptor that binds double-stranded RNA and promotes pro-inflammatory cellular responses. In recent years, TLR3 has emerged as a major regulator of vascular inflammation. The exact role of TLR3 in the development of AS has not been investigated. Isolated human valvular interstitial cells (VICs) were stimulated with the TLR3-agonist polyIC and the resulting pro-inflammatory and pro-osteogenic response measured. Severe AS was induced in wildtype- and TLR3-/- mice via mechanical injury of the aortic valve with a coronary springwire. TLR3 activation was achieved by polyIC injection every 24 h after wire injury, while TLR3 inhibition was realized using Compound 4a (C4a) every 48 h after surgery. Endothelial mesenchymal transition (EndoMT) of human valvular endothelial cells (VECs) was assessed after polyIC stimulation. Stimulation of human VICs with polyIC promoted a strong inflammatory and pro-osteogenic reaction. Similarly, injection of polyIC marginally increased AS development in mice after wire injury. AS induction was significantly decreased in TLR3-/- mice, confirming the role of endogenous TLR3 ligands in AS pathology. Pharmacological inhibition of TLR3 with C4a not only prevented the upregulation of inflammatory cytokines and osteogenic markers in VICs, and EndoMT in VECs, but also significantly abolished the development of AS in vivo. Endogenous TLR3 activation significantly contributes to AS development in mice. Pharmacological inhibition of TLR3 with C4a prevented AS formation. Therefore, targeting TLR3 may be a viable treatment option.


Assuntos
Estenose da Valva Aórtica , Calcinose , Humanos , Camundongos , Animais , Estenose da Valva Aórtica/genética , Valva Aórtica/patologia , Células Endoteliais/metabolismo , Receptor 3 Toll-Like/metabolismo , Células Cultivadas , Calcinose/genética , Calcinose/metabolismo , Calcinose/patologia
19.
Am J Med Genet A ; 191(7): 1722-1740, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36987741

RESUMO

The TRIO gene encodes a rho guanine exchange factor, the function of which is to exchange GDP to GTP, and hence to activate Rho GTPases, and has been described to impact neurodevelopment. Specific genotype-to-phenotype correlations have been established previously describing striking differentiating features seen in variants located in specific domains of the TRIO gene that are associated with opposite effects on RAC1 activity. Currently, 32 cases with a TRIO gene alteration have been published in the medical literature. Here, we report an additional 25, previously unreported individuals who possess heterozygous TRIO variants and we review the literature. In addition, functional studies were performed on the c.4394A > G (N1465S) and c.6244-2A > G TRIO variants to provide evidence for their pathogenicity. Variants reported by the current study include missense variants, truncating nonsense variants, and an intragenic deletion. Clinical features were previously described and included developmental delay, learning difficulties, microcephaly, macrocephaly, seizures, behavioral issues (aggression, stereotypies), skeletal problems including short, tapering fingers and scoliosis, dental problems (overcrowding/delayed eruption), and variable facial features. Here, we report clinical features that have not been described previously, including specific structural brain malformations such as abnormalities of the corpus callosum and ventriculomegaly, additional psychological and dental issues along with a more recognizable facial gestalt linked to the specific domains of the TRIO gene and the effect of the variant upon the function of the encoded protein. This current study further strengthens the genotype-to-phenotype correlation that was previously established and extends the range of phenotypes to include structural brain abnormalities, additional skeletal, dental, and psychiatric issues.


Assuntos
Microcefalia , Malformações do Sistema Nervoso , Humanos , Fenótipo , Mutação , Mutação de Sentido Incorreto , Microcefalia/genética
20.
Immunity ; 40(2): 274-88, 2014 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-24530056

RESUMO

Macrophage activation is associated with profound transcriptional reprogramming. Although much progress has been made in the understanding of macrophage activation, polarization, and function, the transcriptional programs regulating these processes remain poorly characterized. We stimulated human macrophages with diverse activation signals, acquiring a data set of 299 macrophage transcriptomes. Analysis of this data set revealed a spectrum of macrophage activation states extending the current M1 versus M2-polarization model. Network analyses identified central transcriptional regulators associated with all macrophage activation complemented by regulators related to stimulus-specific programs. Applying these transcriptional programs to human alveolar macrophages from smokers and patients with chronic obstructive pulmonary disease (COPD) revealed an unexpected loss of inflammatory signatures in COPD patients. Finally, by integrating murine data from the ImmGen project we propose a refined, activation-independent core signature for human and murine macrophages. This resource serves as a framework for future research into regulation of macrophage activation in health and disease.


Assuntos
Perfilação da Expressão Gênica , Ativação de Macrófagos/imunologia , Modelos Biológicos , Transcriptoma/genética , Animais , Células Cultivadas , Humanos , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA