Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 186(2): 413-427.e17, 2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36638794

RESUMO

Opioids are effective analgesics, but their use is beset by serious side effects, including addiction and respiratory depression, which contribute to the ongoing opioid crisis. The human opioid system contains four opioid receptors (µOR, δOR, κOR, and NOPR) and a set of related endogenous opioid peptides (EOPs), which show distinct selectivity toward their respective opioid receptors (ORs). Despite being key to the development of safer analgesics, the mechanisms of molecular recognition and selectivity of EOPs to ORs remain unclear. Here, we systematically characterize the binding of EOPs to ORs and present five structures of EOP-OR-Gi complexes, including ß-endorphin- and endomorphin-bound µOR, deltorphin-bound δOR, dynorphin-bound κOR, and nociceptin-bound NOPR. These structures, supported by biochemical results, uncover the specific recognition and selectivity of opioid peptides and the conserved mechanism of opioid receptor activation. These results provide a structural framework to facilitate rational design of safer opioid drugs for pain relief.


Assuntos
Receptores Opioides , Humanos , Analgésicos Opioides/farmacologia , Peptídeos Opioides , Receptores Opioides mu/metabolismo , Receptores Opioides/química
2.
Cell ; 162(3): 662-74, 2015 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-26189679

RESUMO

In vivo pharmacology and optogenetics hold tremendous promise for dissection of neural circuits, cellular signaling, and manipulating neurophysiological systems in awake, behaving animals. Existing neural interface technologies, such as metal cannulas connected to external drug supplies for pharmacological infusions and tethered fiber optics for optogenetics, are not ideal for minimally invasive, untethered studies on freely behaving animals. Here, we introduce wireless optofluidic neural probes that combine ultrathin, soft microfluidic drug delivery with cellular-scale inorganic light-emitting diode (µ-ILED) arrays. These probes are orders of magnitude smaller than cannulas and allow wireless, programmed spatiotemporal control of fluid delivery and photostimulation. We demonstrate these devices in freely moving animals to modify gene expression, deliver peptide ligands, and provide concurrent photostimulation with antagonist drug delivery to manipulate mesoaccumbens reward-related behavior. The minimally invasive operation of these probes forecasts utility in other organ systems and species, with potential for broad application in biomedical science, engineering, and medicine.


Assuntos
Estimulação Encefálica Profunda/métodos , Optogenética/métodos , Animais , Encéfalo/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Camundongos , Sondas Moleculares , Tecnologia sem Fio
3.
Am J Physiol Cell Physiol ; 325(1): C17-C28, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37067459

RESUMO

G protein-coupled receptors (GPCRs) constitute the largest family of druggable genes in the human genome. Even though perhaps 30% of approved medications target GPCRs, they interact with only a small number of them. Here, we consider whether there might be new opportunities for transformative therapeutics for neuropsychiatric disorders by specifically targeting both known and understudied GPCRs. Using psychedelic drugs that target serotonin receptors as an example, we show how recent insights into the structure, function, signaling, and cell biology of these receptors have led to potentially novel therapeutics. We next focus on the possibility that nonpsychedelic 5-HT2A receptor agonists might prove to be safe and rapidly acting antidepressants. Finally, we examine understudied and orphan GPCRs using the MRGPR family of receptors as an example.


Assuntos
Receptores Acoplados a Proteínas G , Transdução de Sinais , Humanos , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/agonistas
4.
bioRxiv ; 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37808655

RESUMO

Psychedelic drugs like lysergic acid diethylamide (LSD) and psilocybin have emerged as potentially transformative therapeutics for many neuropsychiatric diseases, including depression, anxiety, post-traumatic stress disorder, migraine, and cluster headaches. LSD and psilocybin exert their psychedelic effects via activation of the 5-hydroxytryptamine 2A receptor (HTR2A). Here we provide a suite of engineered mice useful for clarifying the role of HTR2A and HTR2A-expressing neurons in psychedelic drug actions. We first generated Htr2a-EGFP-CT-IRES-CreERT2 mice (CT:C-terminus) to independently identify both HTR2A-EGFP-CT receptors and HTR2A-containing cells thereby providing a detailed anatomical map of HTR2A and identifying cell types that express HTR2A. We also generated a humanized Htr2a mouse line and an additional constitutive Htr2A-Cre mouse line. Psychedelics induced a variety of known behavioral changes in our mice validating their utility for behavioral studies. Finally, electrophysiology studies revealed that extracellular 5-HT elicited a HTR2A-mediated robust increase in firing of genetically-identified pyramidal neurons--consistent with a plasma membrane localization and mode of action. These mouse lines represent invaluable tools for elucidating the molecular, cellular, pharmacological, physiological, behavioral, and other actions of psychedelic drugs in vivo.

5.
ACS Chem Neurosci ; 13(16): 2386-2398, 2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35894503

RESUMO

Serotonin (5-hydroxytryptamine; 5-HT) 2A receptor (5-HT2AR) signaling is essential for the actions of classical psychedelic drugs. In this study, we examined whether sequence variations in the 5-HT2AR gene affect the signaling of four commonly used psychedelic drugs. We examined the in vitro pharmacology of seven non-synonymous single-nucleotide polymorphisms (SNPs), which give rise to Ser12Asn, Thr25Asn, Asp48Asn, Ile197Val4.47, Ala230Thr, Ala447Val, and His452Tyr variant 5-HT2A serotonin receptors. We found that these non-synonymous SNPs exert statistically significant, although modest, effects on the efficacy and potency of four therapeutically relevant psychedelics. Significantly, the in vitro pharmacological effects of the SNP drug actions at 5-HT2AR are drug specific.


Assuntos
Alucinógenos , Alucinógenos/farmacologia , Polimorfismo de Nucleotídeo Único/genética , Receptor 5-HT2A de Serotonina/genética , Serotonina , Agonistas do Receptor 5-HT2 de Serotonina/farmacologia , Transdução de Sinais
6.
Nat Neurosci ; 24(10): 1414-1428, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34385700

RESUMO

The long-range GABAergic input from the ventral tegmental area (VTA) to the nucleus accumbens (NAc) is relatively understudied, and therefore its role in reward processing has remained unknown. In the present study, we show, in both male and female mice, that long-range GABAergic projections from the VTA to the ventral NAc shell, but not to the dorsal NAc shell or NAc core, are engaged in reward and reinforcement behavior. We show that this GABAergic projection exclusively synapses on to cholinergic interneurons (CINs) in the ventral NAc shell, thereby serving a specialized function in modulating reinforced reward behavior through the inhibition of ventral NAc shell CINs. These findings highlight the diversity in the structural and functional topography of VTA GABAergic projections, and their neuromodulatory interactions across the dorsoventral gradient of the NAc shell. They also further our understanding of neuronal circuits that are directly implicated in neuropsychiatric conditions such as depression and addiction.


Assuntos
Neurônios Colinérgicos/efeitos dos fármacos , Núcleo Accumbens/efeitos dos fármacos , Reforço Psicológico , Área Tegmentar Ventral/fisiopatologia , Ácido gama-Aminobutírico/fisiologia , Animais , Mapeamento Encefálico , Condicionamento Operante/efeitos dos fármacos , Fenômenos Eletrofisiológicos , Feminino , Interneurônios/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Recompensa , Autoestimulação
7.
Elife ; 72018 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-30175957

RESUMO

Though the last decade has seen accelerated advances in techniques and technologies to perturb neuronal circuitry in the brain, we are still poorly equipped to adequately dissect endogenous peptide release in vivo. To this end we developed a system that combines in vivo optogenetics with microdialysis and a highly sensitive mass spectrometry-based assay to measure opioid peptide release in freely moving rodents.


Assuntos
Encéfalo/metabolismo , Peptídeos Opioides/isolamento & purificação , Optogenética , Animais , Espectrometria de Massas , Camundongos , Neurônios/metabolismo , Peptídeos Opioides/metabolismo
9.
Neuron ; 87(5): 1063-77, 2015 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-26335648

RESUMO

The nucleus accumbens (NAc) and the dynorphinergic system are widely implicated in motivated behaviors. Prior studies have shown that activation of the dynorphin-kappa opioid receptor (KOR) system leads to aversive, dysphoria-like behavior. However, the endogenous sources of dynorphin in these circuits remain unknown. We investigated whether dynorphinergic neuronal firing in the NAc is sufficient to induce aversive behaviors. We found that photostimulation of dynorphinergic cells in the ventral NAc shell elicits robust conditioned and real-time aversive behavior via KOR activation, and in contrast, photostimulation of dorsal NAc shell dynorphin cells induced a KOR-mediated place preference and was positively reinforcing. These results show previously unknown discrete subregions of dynorphin-containing cells in the NAc shell that selectively drive opposing behaviors. Understanding the discrete regional specificity by which NAc dynorphinerigic cells regulate preference and aversion provides insight into motivated behaviors that are dysregulated in stress, reward, and psychiatric disease.


Assuntos
Aprendizagem da Esquiva/fisiologia , Dinorfinas/metabolismo , Neurônios/fisiologia , Núcleo Accumbens/citologia , Precursores de Proteínas/metabolismo , Recompensa , Potenciais de Ação/genética , Animais , Condicionamento Operante , Dinorfinas/genética , Estimulação Elétrica , Regulação da Expressão Gênica , Técnicas In Vitro , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Masculino , Aprendizagem em Labirinto , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/classificação , Estimulação Luminosa , Precursores de Proteínas/genética , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo , Autoestimulação , Fatores de Tempo , Tecnologia sem Fio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA