Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 626(7998): 401-410, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38297129

RESUMO

Ferroptosis is a form of cell death that has received considerable attention not only as a means to eradicate defined tumour entities but also because it provides unforeseen insights into the metabolic adaptation that tumours exploit to counteract phospholipid oxidation1,2. Here, we identify proferroptotic activity of 7-dehydrocholesterol reductase (DHCR7) and an unexpected prosurvival function of its substrate, 7-dehydrocholesterol (7-DHC). Although previous studies suggested that high concentrations of 7-DHC are cytotoxic to developing neurons by favouring lipid peroxidation3, we now show that 7-DHC accumulation confers a robust prosurvival function in cancer cells. Because of its far superior reactivity towards peroxyl radicals, 7-DHC effectively shields (phospho)lipids from autoxidation and subsequent fragmentation. We provide validation in neuroblastoma and Burkitt's lymphoma xenografts where we demonstrate that the accumulation of 7-DHC is capable of inducing a shift towards a ferroptosis-resistant state in these tumours ultimately resulting in a more aggressive phenotype. Conclusively, our findings provide compelling evidence of a yet-unrecognized antiferroptotic activity of 7-DHC as a cell-intrinsic mechanism that could be exploited by cancer cells to escape ferroptosis.


Assuntos
Linfoma de Burkitt , Desidrocolesteróis , Ferroptose , Neuroblastoma , Animais , Humanos , Linfoma de Burkitt/metabolismo , Linfoma de Burkitt/patologia , Sobrevivência Celular , Desidrocolesteróis/metabolismo , Peroxidação de Lipídeos , Transplante de Neoplasias , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Oxirredução , Fenótipo , Reprodutibilidade dos Testes
2.
Nature ; 575(7784): 693-698, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31634899

RESUMO

Ferroptosis is an iron-dependent form of necrotic cell death marked by oxidative damage to phospholipids1,2. To date, ferroptosis has been thought to be controlled only by the phospholipid hydroperoxide-reducing enzyme glutathione peroxidase 4 (GPX4)3,4 and radical-trapping antioxidants5,6. However, elucidation of the factors that underlie the sensitivity of a given cell type to ferroptosis7 is crucial to understand the pathophysiological role of ferroptosis and how it may be exploited for the treatment of cancer. Although metabolic constraints8 and phospholipid composition9,10 contribute to ferroptosis sensitivity, no cell-autonomous mechanisms have been identified that account for the resistance of cells to ferroptosis. Here we used an expression cloning approach to identify genes in human cancer cells that are able to complement the loss of GPX4. We found that the flavoprotein apoptosis-inducing factor mitochondria-associated 2 (AIFM2) is a previously unrecognized anti-ferroptotic gene. AIFM2, which we renamed ferroptosis suppressor protein 1 (FSP1) and which was initially described as a pro-apoptotic gene11, confers protection against ferroptosis elicited by GPX4 deletion. We further demonstrate that the suppression of ferroptosis by FSP1 is mediated by ubiquinone (also known as coenzyme Q10, CoQ10): the reduced form, ubiquinol, traps lipid peroxyl radicals that mediate lipid peroxidation, whereas FSP1 catalyses the regeneration of CoQ10 using NAD(P)H. Pharmacological targeting of FSP1 strongly synergizes with GPX4 inhibitors to trigger ferroptosis in a number of cancer entities. In conclusion, the FSP1-CoQ10-NAD(P)H pathway exists as a stand-alone parallel system, which co-operates with GPX4 and glutathione to suppress phospholipid peroxidation and ferroptosis.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Ferroptose/genética , Glutationa/metabolismo , Proteínas Mitocondriais/metabolismo , Animais , Proteínas Reguladoras de Apoptose/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Técnicas de Inativação de Genes , Humanos , Peroxidação de Lipídeos/genética , Camundongos , Proteínas Mitocondriais/genética , Ubiquinona/análogos & derivados , Ubiquinona/metabolismo
3.
Basic Res Cardiol ; 118(1): 47, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37930434

RESUMO

Barth Syndrome (BTHS) is an inherited cardiomyopathy caused by defects in the mitochondrial transacylase TAFAZZIN (Taz), required for the synthesis of the phospholipid cardiolipin. BTHS is characterized by heart failure, increased propensity for arrhythmias and a blunted inotropic reserve. Defects in Ca2+-induced Krebs cycle activation contribute to these functional defects, but despite oxidation of pyridine nucleotides, no oxidative stress developed in the heart. Here, we investigated how retrograde signaling pathways orchestrate metabolic rewiring to compensate for mitochondrial defects. In mice with an inducible knockdown (KD) of TAFAZZIN, and in induced pluripotent stem cell-derived cardiac myocytes, mitochondrial uptake and oxidation of fatty acids was strongly decreased, while glucose uptake was increased. Unbiased transcriptomic analyses revealed that the activation of the eIF2α/ATF4 axis of the integrated stress response upregulates one-carbon metabolism, which diverts glycolytic intermediates towards the biosynthesis of serine and fuels the biosynthesis of glutathione. In addition, strong upregulation of the glutamate/cystine antiporter xCT increases cardiac cystine import required for glutathione synthesis. Increased glutamate uptake facilitates anaplerotic replenishment of the Krebs cycle, sustaining energy production and antioxidative pathways. These data indicate that ATF4-driven rewiring of metabolism compensates for defects in mitochondrial uptake of fatty acids to sustain energy production and antioxidation.


Assuntos
Síndrome de Barth , Animais , Camundongos , Síndrome de Barth/genética , Cistina , Antioxidantes , Ácidos Graxos , Glutamatos , Glutationa
4.
Angew Chem Int Ed Engl ; 62(46): e202313109, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37779101

RESUMO

The short-chain dehydrogenase/reductase (SDR) superfamily members acyl-ACP reductases FabG and FabI are indispensable core enzymatic modules and catalytic orientation controllers in type-II fatty acid biosynthesis. Herein, we report their distinct substrate allosteric recognition and enantioselective reduction mechanisms. FabG achieves allosteric regulation of ACP and NADPH through ACP binding across two adjacent FabG monomers, while FabI follows an irreversible compulsory order of substrate binding in that NADH binding must precede that of ACP on a discrete FabI monomer. Moreover, FabG and FabI utilize a backdoor residue Phe187 or a "rheostat" α8 helix for acyl chain length selection, and their corresponding triad residues Ser142 or Tyr145 recognize the keto- or enoyl-acyl substrates, respectively, facilitating initiation of nucleophilic attack by NAD(P)H. The other two triad residues (Tyr and Lys) mediate subsequent proton transfer and (R)-3-hydroxyacyl- or saturated acyl-ACP production.


Assuntos
Ácidos Graxos , Oxirredutases , Oxirredutases/metabolismo , Catálise
5.
EMBO J ; 37(22)2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30389661

RESUMO

Nutrient overload in combination with decreased energy dissipation promotes obesity and diabetes. Obesity results in a hormonal imbalance, which among others activates G protein-coupled receptors utilizing diacylglycerol (DAG) as secondary messenger. Protein kinase D1 (PKD1) is a DAG effector, which integrates multiple nutritional and hormonal inputs, but its physiological role in adipocytes is unknown. Here, we show that PKD1 promotes lipogenesis and suppresses mitochondrial fragmentation, biogenesis, respiration, and energy dissipation in an AMP-activated protein kinase (AMPK)-dependent manner. Moreover, mice lacking PKD1 in adipocytes are resistant to diet-induced obesity due to elevated energy expenditure. Beiging of adipocytes promotes energy expenditure and counteracts obesity. Consistently, deletion of PKD1 promotes expression of the ß3-adrenergic receptor (ADRB3) in a CCAAT/enhancer binding protein (C/EBP)-α- and δ-dependent manner, which leads to the elevated expression of beige markers in adipocytes and subcutaneous adipose tissue. Finally, deletion of PKD1 in adipocytes improves insulin sensitivity and ameliorates liver steatosis. Thus, depletion of PKD1 in adipocytes increases energy dissipation by several complementary mechanisms and might represent an attractive strategy to treat obesity and its related complications.


Assuntos
Adipócitos/metabolismo , Adiposidade , Metabolismo Energético , Fígado Gorduroso/metabolismo , Obesidade/metabolismo , Proteína Quinase C/metabolismo , Gordura Subcutânea/metabolismo , Células 3T3-L1 , Adipócitos/patologia , Animais , Proteína delta de Ligação ao Facilitador CCAAT/genética , Proteína delta de Ligação ao Facilitador CCAAT/metabolismo , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Fígado Gorduroso/genética , Fígado Gorduroso/patologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Mutantes , Obesidade/genética , Obesidade/patologia , Proteína Quinase C/genética , Receptores Adrenérgicos beta 3/genética , Receptores Adrenérgicos beta 3/metabolismo , Sistemas do Segundo Mensageiro/genética , Gordura Subcutânea/fisiologia
6.
Int J Mol Sci ; 23(16)2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-36012485

RESUMO

All forms of restriction, from caloric to amino acid to glucose restriction, have been established in recent years as therapeutic options for various diseases, including cancer. However, usually there is no direct comparison between the different restriction forms. Additionally, many cell culture experiments take place under static conditions. In this work, we used a closed perfusion culture in murine L929 cells over a period of 7 days to compare methionine restriction (MetR) and glucose restriction (LowCarb) in the same system and analysed the metabolome by liquid chromatography mass spectrometry (LC-MS). In addition, we analysed the inhibition of glycolysis by 2-deoxy-D-glucose (2-DG) over a period of 72 h. 2-DG induced very fast a low-energy situation by a reduced glycolysis metabolite flow rate resulting in pyruvate, lactate, and ATP depletion. Under perfusion culture, both MetR and LowCarb were established on the metabolic level. Interestingly, over the period of 7 days, the metabolome of MetR and LowCarb showed more similarities than differences. This leads to the conclusion that the conditioned medium, in addition to the different restriction forms, substantially reprogramm the cells on the metabolic level.


Assuntos
Desoxiglucose , Glucose , Animais , Desoxiglucose/farmacologia , Glucose/metabolismo , Glicólise , Espectrometria de Massas , Metionina/metabolismo , Camundongos , Perfusão
7.
J Struct Biol ; 213(3): 107776, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34371166

RESUMO

The Mycobacterium tuberculosis trifunctional enzyme (MtTFE) is an α2ß2 tetrameric enzyme. The α-chain harbors the 2E-enoyl-CoA hydratase (ECH) and 3S-hydroxyacyl-CoA dehydrogenase (HAD) activities and the ß-chain provides the 3-ketoacyl-CoA thiolase (KAT) activity. Enzyme kinetic data reported here show that medium and long chain enoyl-CoA molecules are preferred substrates for MtTFE. Modelling studies indicate how the linear medium and long acyl chains of these substrates can bind to each of the active sites. In addition, crystallographic binding studies have identified three new CoA binding sites which are different from the previously known CoA binding sites of the three TFE active sites. Structure comparisons provide new insights into the properties of ECH, HAD and KAT active sites of MtTFE. The interactions of the adenine moiety of CoA with loop-2 of the ECH active site cause a conformational change of this loop by which a competent ECH active site is formed. The NAD+ binding domain (domain C) of the HAD part of MtTFE has only a few interactions with the rest of the complex and adopts a range of open conformations, whereas the A-domain of the ECH part is rigidly fixed with respect to the HAD part. Two loops, the CB1-CA1 region and the catalytic CB4-CB5 loop, near the thiolase active site and the thiolase dimer interface, have high B-factors. Structure comparisons suggest that a competent and stable thiolase dimer is formed only when complexed with the α-chains, highlighting the importance of the assembly for the proper functioning of the complex.


Assuntos
3-Hidroxiacil-CoA Desidrogenases , Mycobacterium tuberculosis , 3-Hidroxiacil-CoA Desidrogenases/química , 3-Hidroxiacil-CoA Desidrogenases/metabolismo , Enoil-CoA Hidratase/química , Oxirredução , Especificidade por Substrato
8.
Int J Legal Med ; 135(1): 183-191, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33180198

RESUMO

In the last few years, quantitative analysis of metabolites in body fluids using LC/MS has become an established method in laboratory medicine and toxicology. By preparing metabolite profiles in biological specimens, we are able to understand pathophysiological mechanisms at the biochemical and thus the functional level. An innovative investigative method, which has not yet been used widely in the forensic context, is to use the clinical application of metabolomics. In a metabolomic analysis of 41 samples of postmortem cerebrospinal fluid (CSF) samples divided into cohorts of four different causes of death, namely, cardiovascular fatalities, isoIated torso trauma, traumatic brain injury, and multi-organ failure, we were able to identify relevant differences in the metabolite profile between these individual groups. According to this preliminary assessment, we assume that information on biochemical processes is not gained by differences in the concentration of individual metabolites in CSF, but by a combination of differently distributed metabolites forming the perspective of a new generation of biomarkers for diagnosing (fatal) TBI and associated neuropathological changes in the CNS using CSF samples.


Assuntos
Líquido Cefalorraquidiano/metabolismo , Medicina Legal/métodos , Metabolômica , Mudanças Depois da Morte , Adulto , Idoso , Idoso de 80 Anos ou mais , Causas de Morte , Cromatografia Líquida , Feminino , Humanos , Metabolismo dos Lipídeos , Masculino , Espectrometria de Massas , Pessoa de Meia-Idade
9.
Int J Legal Med ; 135(4): 1525-1535, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33895854

RESUMO

The aim of this study was to investigate if the biomarkers myelin basic protein (MBP) and neurofilament-H (NF-H) yielded informative value in forensic diagnostics when examining cadaveric cerebrospinal fluid (CSF) biochemically via an enzyme-linked immunosorbent assay (ELISA) and comparing the corresponding brain tissue in fatal traumatic brain injury (TBI) autopsy cases by immunocytochemistry versus immunohistochemistry. In 21 trauma and 19 control cases, CSF was collected semi-sterile after suboccipital puncture and brain specimens after preparation. The CSF MBP (p = 0.006) and NF-H (p = 0.0002) levels after TBI were significantly higher than those in cardiovascular controls. Immunohistochemical staining against MBP and against NF-H was performed on cortical and subcortical samples from also biochemically investigated cases (5 TBI cases/5 controls). Compared to the controls, the TBI cases showed a visually reduced staining reaction against MBP or repeatedly ruptured neurofilaments against NF-H. Immunocytochemical tests showed MBP-positive phagocytizing macrophages in CSF with a survival time of > 24 h. In addition, numerous TMEM119-positive microglia could be detected with different degrees of staining intensity in the CSF of trauma cases. As a result, we were able to document that elevated levels of MBP and NF-H in the CSF should be considered as useful neuroinjury biomarkers of traumatic brain injury.


Assuntos
Lesões Encefálicas Traumáticas/diagnóstico , Proteína Básica da Mielina/líquido cefalorraquidiano , Proteínas de Neurofilamentos/líquido cefalorraquidiano , Adulto , Idoso , Idoso de 80 Anos ou mais , Autopsia , Biomarcadores/líquido cefalorraquidiano , Estudos de Casos e Controles , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Imuno-Histoquímica/métodos , Masculino , Pessoa de Meia-Idade
10.
Int J Mol Sci ; 22(6)2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33809777

RESUMO

Since Otto Warburg reported in 1924 that cancer cells address their increased energy requirement through a massive intake of glucose, the cellular energy level has offered a therapeutic anticancer strategy. Methionine restriction (MetR) is one of the most effective approaches for inducing low-energy metabolism (LEM) due to the central position in metabolism of this amino acid. However, no simple in vitro system for the rapid analysis of MetR is currently available, and this study establishes the murine cell line L929 as such a model system. L929 cells react rapidly and efficiently to MetR, and the analysis of more than 150 different metabolites belonging to different classes (amino acids, urea and tricarboxylic acid cycle (TCA) cycles, carbohydrates, etc.) by liquid chromatography/mass spectrometry (LC/MS) defines a metabolic fingerprint and enables the identification of specific metabolites representing normal or MetR conditions. The system facilitates the rapid and efficient testing of potential cancer therapeutic metabolic targets. To date, MS studies of MetR have been performed using organisms and yeast, and the current LC/MS analysis of the intra- and extracellular metabolites in the murine cell line L929 over a period of 5 days thus provides new insights into the effects of MetR at the cellular metabolic level.


Assuntos
Fibroblastos/metabolismo , Metionina/metabolismo , Animais , Morte Celular , Linhagem Celular , Proliferação de Células , Ligantes , Metaboloma , Camundongos , Fator de Necrose Tumoral alfa/metabolismo
11.
Int J Mol Sci ; 22(21)2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34769059

RESUMO

Methionine restriction (MetR) is an efficient method of amino acid restriction (AR) in cells and organisms that induces low energy metabolism (LEM) similar to caloric restriction (CR). The implementation of MetR as a therapy for cancer or other diseases is not simple since the elimination of a single amino acid in the diet is difficult. However, the in vivo turnover rate of cysteine is usually higher than the rate of intake through food. For this reason, every cell can enzymatically synthesize cysteine from methionine, which enables the use of specific enzymatic inhibitors. In this work, we analysed the potential of cysteine restriction (CysR) in the murine cell line L929. This study determined metabolic fingerprints using mass spectrometry (LC/MS). The profiles were compared with profiles created in an earlier work under MetR. The study was supplemented by proliferation studies using D-amino acid analogues and inhibitors of intracellular cysteine synthesis. CysR showed a proliferation inhibition potential comparable to that of MetR. However, the metabolic footprints differed significantly and showed that CysR does not induce classic LEM at the metabolic level. Nevertheless, CysR offers great potential as an alternative for decisive interventions in general and tumour metabolism at the metabolic level.


Assuntos
Cisteína/metabolismo , Fibroblastos/metabolismo , Metionina/metabolismo , Neoplasias/metabolismo , Animais , Restrição Calórica/métodos , Linhagem Celular , Dieta/métodos , Camundongos
12.
J Struct Biol ; 210(3): 107494, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32171906

RESUMO

Degradation of fatty acids by the ß-oxidation pathway results in the formation of acetyl-CoA which enters the TCA cycle for the production of ATP. In E. coli, the last three steps of the ß-oxidation are catalyzed by two heterotetrameric α2ß2 enzymes namely the aerobic trifunctional enzyme (EcTFE) and the anaerobic TFE (anEcTFE). The α-subunit of TFE has 2E-enoyl-CoA hydratase (ECH) and 3S-hydroxyacyl-CoA dehydrogenase (HAD) activities whereas the ß-subunit is a thiolase with 3-ketoacyl-CoA thiolase (KAT) activity. Recently, it has been shown that the two TFEs have complementary substrate specificities allowing for the complete degradation of long chain fatty acyl-CoAs into acetyl-CoA under aerobic conditions. Also, it has been shown that the tetrameric EcTFE and anEcTFE assemblies are similar to the TFEs of Pseudomans fragi and human, respectively. Here the properties of the EcTFE subunits are further characterized. Strikingly, it is observed that when expressed separately, EcTFE-α is a catalytically active monomer whereas EcTFE-ß is inactive. However, when mixed together active EcTFE tetramer is reconstituted. The crystal structure of the EcTFE-α chain is also reported, complexed with ATP, bound in its HAD active site. Structural comparisons show that the EcTFE hydratase active site has a relatively small fatty acyl tail binding pocket when compared to other TFEs in good agreement with its preferred specificity for short chain 2E-enoyl-CoA substrates. Furthermore, it is observed that millimolar concentrations of ATP destabilize the EcTFE complex, and this may have implications for the ATP-mediated regulation of ß-oxidation in E. coli.


Assuntos
Enoil-CoA Hidratase/metabolismo , Escherichia coli/enzimologia , Escherichia coli/metabolismo , Complexos Multienzimáticos/metabolismo , Enoil-CoA Hidratase/química , Enoil-CoA Hidratase/genética , Complexos Multienzimáticos/química , Complexos Multienzimáticos/genética , Oxirredução , Especificidade por Substrato
13.
Biochem J ; 476(2): 307-332, 2019 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-30573650

RESUMO

The SCP2 (sterol carrier protein 2)-thiolase (type-1) functions in the vertebrate peroxisomal, bile acid synthesis pathway, converting 24-keto-THC-CoA and CoA into choloyl-CoA and propionyl-CoA. This conversion concerns the ß-oxidation chain shortening of the steroid fatty acyl-moiety of 24-keto-THC-CoA. This class of dimeric thiolases has previously been poorly characterized. High-resolution crystal structures of the zebrafish SCP2-thiolase (type-1) now reveal an open catalytic site, shaped by residues of both subunits. The structure of its non-dimerized monomeric form has also been captured in the obtained crystals. Four loops at the dimer interface adopt very different conformations in the monomeric form. These loops also shape the active site and their structural changes explain why a competent active site is not present in the monomeric form. Native mass spectrometry studies confirm that the zebrafish SCP2-thiolase (type-1) as well as its human homolog are weak transient dimers in solution. The crystallographic binding studies reveal the mode of binding of CoA and octanoyl-CoA in the active site, highlighting the conserved geometry of the nucleophilic cysteine, the catalytic acid/base cysteine and the two oxyanion holes. The dimer interface of SCP2-thiolase (type-1) is equally extensive as in other thiolase dimers; however, it is more polar than any of the corresponding interfaces, which correlates with the notion that the enzyme forms a weak transient dimer. The structure comparison of the monomeric and dimeric forms suggests functional relevance of this property. These comparisons provide also insights into the structural rearrangements that occur when the folded inactive monomers assemble into the mature dimer.


Assuntos
Acil Coenzima A/química , Proteínas de Transporte/química , Modelos Moleculares , Proteínas de Peixe-Zebra/química , Animais , Domínio Catalítico , Humanos , Especificidade por Substrato , Peixe-Zebra
14.
Biochem J ; 476(13): 1975-1994, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31235482

RESUMO

The trifunctional enzyme (TFE) catalyzes the last three steps of the fatty acid ß-oxidation cycle. Two TFEs are present in Escherichia coli, EcTFE and anEcTFE. EcTFE is expressed only under aerobic conditions, whereas anEcTFE is expressed also under anaerobic conditions, with nitrate or fumarate as the ultimate electron acceptor. The anEcTFE subunits have higher sequence identity with the human mitochondrial TFE (HsTFE) than with the soluble EcTFE. Like HsTFE, here it is found that anEcTFE is a membrane-bound complex. Systematic enzyme kinetic studies show that anEcTFE has a preference for medium- and long-chain enoyl-CoAs, similar to HsTFE, whereas EcTFE prefers short chain enoyl-CoA substrates. The biophysical characterization of anEcTFE and EcTFE shows that EcTFE is heterotetrameric, whereas anEcTFE is purified as a complex of two heterotetrameric units, like HsTFE. The tetrameric assembly of anEcTFE resembles the HsTFE tetramer, although the arrangement of the two anEcTFE tetramers in the octamer is different from the HsTFE octamer. These studies demonstrate that EcTFE and anEcTFE have complementary substrate specificities, allowing for complete degradation of long-chain enoyl-CoAs under aerobic conditions. The new data agree with the notion that anEcTFE and HsTFE are evolutionary closely related, whereas EcTFE belongs to a separate subfamily.


Assuntos
Enoil-CoA Hidratase/metabolismo , Escherichia coli K12/enzimologia , Proteínas de Escherichia coli/metabolismo , Aerobiose , Anaerobiose , Catálise , Enoil-CoA Hidratase/química , Enoil-CoA Hidratase/genética , Escherichia coli K12/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Humanos , Oxirredução , Estrutura Quaternária de Proteína , Especificidade por Substrato
15.
Biomacromolecules ; 18(3): 695-708, 2017 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-28211679

RESUMO

The regenerative potential of bone is strongly impaired in pathological conditions, such as nonunion fractures. To support bone regeneration various scaffolds have been developed in the past, which have been functionalized with osteogenic growth factors such as bone morphogenetic proteins (BMPs). However, most of them required supra-physiological levels of these proteins leading to burst releases, thereby causing severe side effects. Site-specific, covalent coupling of BMP2 to implant materials might be an optimal strategy in order to overcome these problems. Therefore, we created a BMP-2 variant (BMP2-K3Plk) containing a noncanonical amino acid (propargyl-l-lysine) substitution introduced by genetic code expansion that allows for site-specific and covalent immobilization onto polymeric scaffold materials. To directly compare different coupling strategies, we also produced a BMP2 variant containing an additional cysteine residue (BMP2-A2C) allowing covalent coupling by thioether formation. The BMP2-K3Plk mutant was coupled to functionalized beads by a copper-catalyzed azide-alkyne cycloaddition (CuAAC) either directly or via a short biotin-PEG linker both with high specificity. After exposing the BMP-coated beads to C2C12 cells, ALP expression appeared locally restricted in close proximity to these beads, showing that both coupled BMP2 variants trigger cell differentiation. The advantage of our approach over non-site-directed immobilization techniques is the ability to produce fully defined osteogenic surfaces, allowing for lower BMP2 loads and concomitant higher bioactivities, for example, due to controlled orientation toward BMP2 receptors. Such products might provide superior bone healing capabilities with potential safety advantages as of homogeneous product outcome.


Assuntos
Proteína Morfogenética Óssea 2/genética , Proteínas Imobilizadas/química , Alicerces Teciduais/química , Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Materiais Biocompatíveis/química , Proteína Morfogenética Óssea 2/química , Regeneração Óssea/fisiologia , Osso e Ossos/citologia , Osso e Ossos/metabolismo , Diferenciação Celular , Linhagem Celular Tumoral , Clonagem Molecular , Humanos , Osteogênese/fisiologia , Polímeros/química
16.
Biochim Biophys Acta ; 1851(10): 1394-405, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26248199

RESUMO

α-Methylacyl-CoA racemase (Amacr) catalyzes the racemization of the 25-methyl group in C27-intermediates in bile acid synthesis and in methyl-branched fatty acids such as pristanic acid, a metabolite derived from phytol. Consequently, patients with Amacr deficiency accumulate C27-bile acid intermediates, pristanic and phytanic acid and display sensorimotor neuropathy, seizures and relapsing encephalopathy. In contrast to humans, Amacr-deficient mice are clinically symptomless on a standard laboratory diet, but failed to thrive when fed phytol-enriched chow. In this study, the effect and the mechanisms behind the development of the phytol-feeding associated disease state in Amacr-deficient mice were investigated. All Amacr-/- mice died within 36weeks on a phytol diet, while wild-type mice survived. Liver failure was the main cause of death accompanied by kidney and brain abnormalities. Histological analysis of liver showed inflammation, fibrotic and necrotic changes, Kupffer cell proliferation and fatty changes in hepatocytes, and serum analysis confirmed the hepatic disease. Pristanic and phytanic acids accumulated in livers of Amacr-/- mice after a phytol diet. Microarray analysis also revealed changes in the expression levels of numerous genes in wild-type mouse livers after two weeks of the phytol diet compared to a control diet. This indicates that detoxification of phytol metabolites in liver is accompanied by activation of multiple pathways at the molecular level and Amacr-/- mice are not able to respond adequately. Phytol causes primary failure in liver leading to death of Amacr-/- mice thus emphasizing the indispensable role of Amacr in detoxification of α-methyl-branched fatty acids.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Fitol/toxicidade , Racemases e Epimerases/deficiência , Animais , Ácidos e Sais Biliares/genética , Ácidos e Sais Biliares/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Doença Hepática Induzida por Substâncias e Drogas/genética , Doença Hepática Induzida por Substâncias e Drogas/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Células de Kupffer/metabolismo , Células de Kupffer/patologia , Camundongos , Camundongos Knockout
17.
Biochem J ; 471(2): 267-79, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26285655

RESUMO

Tumour cells are reported to display an imbalance in the levels of ROS (reactive oxygen species). Frequently, elevated ROS production goes along with compensatory up-regulation of antioxidant enzymes. Accordingly, we found in a previous study that protein levels of several peroxiredoxins, including PRDX6 (peroxiredoxin 6), are highly elevated in experimentally induced melanomas. In the present study, we investigated the functional role of PRDX6 in human melanoma cells. PRDX6 is a bifunctional enzyme, which harbours iPLA2 (Ca(2+)-independent phospholipase A2) activity in addition to its peroxidase function. Our results show that PRDX6 is strongly expressed in most melanoma cells and its expression levels are maintained in a post-transcriptional manner, particularly by EGFR (epidermal growth factor receptor)-dependent signalling. PRDX6 enhances cell viability mainly by enhancing proliferation, which goes along with activation of Src family kinases. Interestingly, we were able to show that the phospholipase activity of the enzyme mediates the pro-proliferative effect of PRDX6. We identified AA (arachidonic acid) as a crucial effector of PRDX6-dependent proliferation and inducer of Src family kinase activation. These results support further the biological importance of the emerging field of lipid signalling in melanoma and highlight the particular functional relevance of PRDX6-dependent phospholipase activity.


Assuntos
Ácido Araquidônico/metabolismo , Melanoma/enzimologia , Proteínas de Neoplasias/metabolismo , Peroxirredoxina VI/metabolismo , Transdução de Sinais , Animais , Ácido Araquidônico/genética , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Receptores ErbB/genética , Receptores ErbB/metabolismo , Humanos , Melanoma/genética , Camundongos , Proteínas de Neoplasias/genética , Peroxirredoxina VI/genética , Quinases da Família src/genética , Quinases da Família src/metabolismo
18.
BMC Biol ; 13: 77, 2015 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-26385096

RESUMO

BACKGROUND: Bone morphogenetic protein (BMP)-2 and growth and differentiation factor (GDF)-5 are two related transforming growth factor (TGF)-ß family members with important functions in embryonic development and tissue homeostasis. BMP-2 is best known for its osteoinductive properties whereas GDF-5-as evident from its alternative name, cartilage derived morphogenetic protein 1-plays an important role in the formation of cartilage. In spite of these differences both factors signal by binding to the same subset of BMP receptors, raising the question how these different functionalities are generated. The largest difference in receptor binding is observed in the interaction with the type I receptor BMPR-IA. GDF-5, in contrast to BMP-2, shows preferential binding to the isoform BMPR-IB, which is abrogated by a single amino acid (A57R) substitution. The resulting variant, GDF-5 R57A, represents a "BMP-2 mimic" with respect to BMP receptor binding. In this study we thus wanted to analyze whether the two growth factors can induce distinct signals via an identically composed receptor. RESULTS: Unexpectedly and dependent on the cellular context, GDF-5 R57A showed clear differences in its activity compared to BMP-2. In ATDC-5 cells, both ligands induced alkaline phosphatase (ALP) expression with similar potency. But in C2C12 cells, the BMP-2 mimic GDF-5 R57A (and also wild-type GDF-5) clearly antagonized BMP-2-mediated ALP expression, despite signaling in both cell lines occurring solely via BMPR-IA. The BMP-2- antagonizing properties of GDF-5 and GDF-5 R57A could also be observed in vivo when implanting BMP-2 and either one of the two GDF-5 ligands simultaneously at heterotopic sites. CONCLUSIONS: Although comparison of the crystal structures of the GDF-5 R57A:BMPR-IAEC- and BMP-2:BMPR-IAEC complex revealed small ligand-specific differences, these cannot account for the different signaling characteristics because the complexes seem identical in both differently reacting cell lines. We thus predict an additional component, most likely a not yet identified GDF-5-specific co-receptor, which alters the output of the signaling complexes. Hence the presence or absence of this component then switches GDF-5's signaling capabilities to act either similar to BMP-2 or as a BMP-2 antagonist. These findings might shed new light on the role of GDF-5, e.g., in cartilage maintenance and/or limb development in that it might act as an inhibitor of signaling events initiated by other BMPs.


Assuntos
Proteína Morfogenética Óssea 2/metabolismo , Fator 5 de Diferenciação de Crescimento/metabolismo , Linhagem Celular Tumoral , Humanos , Ligantes , Ligação Proteica , Conformação Proteica , Transdução de Sinais
19.
Biochemistry ; 54(37): 5669-72, 2015 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-26348625

RESUMO

Metabolism of cholesterol by Mycobacterium tuberculosis (Mtb) contributes to its pathogenesis. We show that ChsE4-ChsE5 (Rv3504/Rv3505) specifically catalyzes dehydrogenation of the (25S)-3-oxo-cholest-4-en-26-oyl-CoA diastereomer in cholesterol side chain ß-oxidation. Thus, a dichotomy between the supply of both 25R and 25S metabolic precursors by upstream cytochrome P450s and the substrate stereospecificity of ChsE4-ChsE5 exists. We reconcile the dilemma of 25R metabolite production by demonstrating that mycobacterial MCR (Rv1143) can efficiently epimerize C25 diastereomers of 3-oxo-cholest-4-en-26-oyl-CoA. Our data suggest that cholesterol and cholesterol ester precursors can converge into a single catabolic pathway, thus widening the metabolic niche in which Mtb survives.


Assuntos
Acil Coenzima A/química , Proteínas de Bactérias/química , Ésteres do Colesterol/química , Colesterol/análogos & derivados , Mycobacterium tuberculosis/metabolismo , Racemases e Epimerases/química , Acil Coenzima A/metabolismo , Proteínas de Bactérias/metabolismo , Colesterol/química , Colesterol/metabolismo , Ésteres do Colesterol/metabolismo , Cinética , Redes e Vias Metabólicas , Oxirredução , Racemases e Epimerases/metabolismo , Estereoisomerismo
20.
Dev Biol ; 391(1): 66-80, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24726525

RESUMO

To understand the functional role of the peroxisomal membrane channel Pxmp2, mice with a targeted disruption of the Pxmp2 gene were generated. These mice were viable, grew and bred normally. However, Pxmp2(-/-) female mice were unable to nurse their pups. Lactating mammary gland epithelium displayed secretory lipid droplets and milk proteins, but the size of the ductal system was greatly reduced. Examination of mammary gland development revealed that retarded mammary ductal outgrowth was due to reduced proliferation of epithelial cells during puberty. Transplantation experiments established the Pxmp2(-/-) mammary stroma as a tissue responsible for suppression of epithelial growth. Morphological and biochemical examination confirmed the presence of peroxisomes in the mammary fat pad adipocytes, and functional Pxmp2 was detected in the stroma of wild-type mammary glands. Deletion of Pxmp2 led to an elevation in the expression of peroxisomal proteins in the mammary fat pad but not in liver or kidney of transgenic mice. Lipidomics of Pxmp2(-/-)mammary fat pad showed a decrease in the content of myristic acid (C14), a principal substrate for protein myristoylation and a potential peroxisomal ß-oxidation product. Analysis of complex lipids revealed a reduced concentration of a variety of diacylglycerols and phospholipids containing mostly polyunsaturated fatty acids that may be caused by activation of lipid peroxidation. However, an antioxidant-containing diet did not stimulate mammary epithelial proliferation in Pxmp2(-/-) mice. The results point to disturbances of lipid metabolism in the mammary fat pad that in turn may result in abnormal epithelial growth. The work reveals impaired mammary gland development as a new category of peroxisomal disorders.


Assuntos
Metabolismo dos Lipídeos , Glândulas Mamárias Animais/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/fisiologia , Peroxissomos/metabolismo , Tecido Adiposo/metabolismo , Animais , Ácidos e Sais Biliares/química , Células Epiteliais/citologia , Ácidos Graxos/química , Feminino , Homeostase , Lactação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fenótipo , Poliaminas/química , Frações Subcelulares , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA