Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Virol ; 81(24): 13825-34, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17913824

RESUMO

Human cytomegalovirus (CMV), a ubiquitous human pathogen, is a leading cause of congenital infections and represents a serious health risk for the immunosuppressed patient. A vaccine against CMV is currently not available. CMV is characterized by its large genome and by multiple genes modulating the immunity of the host, which cluster predominantly at genome termini. Here, we tested whether the deletion of gene blocks rich in immunomodulatory genes could be used as a novel concept in the generation of immunogenic but avirulent, herpesvirus vaccines. To generate an experimental CMV vaccine, we selectively deleted 32 genes from the mouse cytomegalovirus (MCMV) genome. The resulting mutant grew to titers similar to that of wild-type MCMV in vitro. In vivo, the mutant was 10,000-fold attenuated and well tolerated, even by highly susceptible mice deficient for B, T, and NK cells or for the interferon type I receptor. Equally relevant for safety concerns, immune suppression did not lead to the mutant's reactivation from latency. Immunization with the replication-competent mutant, but not with inactivated virus, resulted in protective immunity, which increased over time. Vaccination induced MCMV-specific antibodies and a strong T-cell response. We propose that a targeted and rational approach can improve future herpesvirus vaccines and vaccine vectors.


Assuntos
Vacinas contra Citomegalovirus/imunologia , Deleção de Genes , Infecções por Herpesviridae/prevenção & controle , Muromegalovirus/genética , Muromegalovirus/imunologia , Vacinas Atenuadas/imunologia , Animais , Anticorpos Antivirais/sangue , Vacinas contra Citomegalovirus/administração & dosagem , Vacinas contra Citomegalovirus/genética , Fibroblastos/virologia , Genoma Viral , Infecções por Herpesviridae/imunologia , Infecções por Herpesviridae/virologia , Imunização , Macrófagos/virologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos SCID , Muromegalovirus/crescimento & desenvolvimento , Células NIH 3T3 , Linfócitos T/imunologia , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/genética , Latência Viral
2.
Int J Med Microbiol ; 298(1-2): 115-25, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17702650

RESUMO

The advances of sequence knowledge and genetic engineering hold a great promise for a rational approach to vaccine development. Herpesviruses are important pathogens of all vertebrates. They cause acute and chronic infections and persist in their hosts for life. In man there are eight herpesviruses known and most of them can be linked to diseases. To date only one licensed vaccine against a human herpesvirus exists and there is no proven successful concept on rational design for herpesvirus vaccines available. Here, we use new reverse genetic systems, based on the 230-kb mouse cytomegalovirus genome to explore new methods of vaccine delivery and of virus attenuation. With regard to virus delivery, we show that the bacterial transfer of the infectious DNA in vivo is theoretically possible but not yet a practical option. With regard to a rational approach of virus attenuation, we consider a selective deletion of viral genes that modulate the immune response of the host.


Assuntos
Biotecnologia/métodos , Infecções por Herpesviridae/imunologia , Herpesviridae/imunologia , Vacinas contra Herpesvirus/imunologia , Muromegalovirus/genética , Muromegalovirus/imunologia , Vacinas de DNA/imunologia , Animais , DNA Viral/química , DNA Viral/genética , Deleção de Genes , Vetores Genéticos , Infecções por Herpesviridae/prevenção & controle , Infecções por Herpesviridae/virologia , Vacinas contra Herpesvirus/genética , Humanos
3.
PLoS Negl Trop Dis ; 11(12): e0006108, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29216187

RESUMO

Although effective rabies virus vaccines have been existing for decades, each year, rabies virus infections still cause around 50.000 fatalities worldwide. Most of these cases occur in developing countries, where these vaccines are not available. The reasons for this are the prohibitive high costs of cell culture or egg grown rabies virus vaccines and the lack of a functional cold chain in many regions in which rabies virus is endemic. Here, we describe the excellent temperature resistance of a non-replicating mRNA based rabies virus vaccine encoding the rabies virus glycoprotein (RABV-G). Prolonged storage of the vaccine from -80°C to up to +70°C for several months did not impact the protective capacity of the mRNA vaccine. Efficacy after storage was demonstrated by the induction of rabies specific virus neutralizing antibodies and protection in mice against lethal rabies infection. Moreover, storing the vaccine at oscillating temperatures between +4° and +56°C for 20 cycles in order to simulate interruptions of the cold chain during vaccine transport, did not affect the vaccine's immunogenicity and protective characteristics, indicating that maintenance of a cold chain is not essential for this vaccine.


Assuntos
Antígenos Virais/genética , Glicoproteínas/genética , Imunogenicidade da Vacina , RNA Mensageiro , Vacina Antirrábica/imunologia , Vírus da Raiva/genética , Raiva/prevenção & controle , Potência de Vacina , Proteínas do Envelope Viral/genética , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Camundongos , Vacina Antirrábica/administração & dosagem , Vacina Antirrábica/genética , Vírus da Raiva/imunologia , Temperatura , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia
4.
PLoS Negl Trop Dis ; 10(6): e0004746, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27336830

RESUMO

Rabies is a zoonotic infectious disease of the central nervous system (CNS). In unvaccinated or untreated subjects, rabies virus infection causes severe neurological symptoms and is invariably fatal. Despite the long-standing existence of effective vaccines, vaccine availability remains insufficient, with high numbers of fatal infections mostly in developing countries. Nucleic acid based vaccines have proven convincingly as a new technology for the fast development of vaccines against newly emerging pathogens, diseases where no vaccine exists or for replacing already existing vaccines. We used an optimized non-replicating rabies virus glycoprotein (RABV-G) encoding messenger RNA (mRNA) to induce potent neutralizing antibodies (VN titers) in mice and domestic pigs. Functional antibody titers were followed in mice for up to one year and titers remained stable for the entire observation period in all dose groups. T cell analysis revealed the induction of both, specific CD4+ as well as CD8+ T cells by RABV-G mRNA, with the induced CD4+ T cells being higher than those induced by a licensed vaccine. Notably, RABV-G mRNA vaccinated mice were protected against lethal intracerebral challenge infection. Inhibition of viral replication by vaccination was verified by qRT-PCR. Furthermore, we demonstrate that CD4+ T cells are crucial for the generation of neutralizing antibodies. In domestic pigs we were able to induce VN titers that correlate with protection in adult and newborn pigs. This study demonstrates the feasibility of a non-replicating mRNA rabies vaccine in small and large animals and highlights the promises of mRNA vaccines for the prevention of infectious diseases.


Assuntos
Glicoproteínas/imunologia , Fragmentos de Peptídeos/imunologia , RNA Mensageiro/imunologia , Vacina Antirrábica , Raiva/veterinária , Doenças dos Suínos/prevenção & controle , Proteínas Virais/imunologia , Animais , Animais Recém-Nascidos , Sequência de Bases , Relação Dose-Resposta Imunológica , Feminino , Células HeLa , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Gravidez , RNA Mensageiro/química , Raiva/mortalidade , Raiva/prevenção & controle , Vacina Antirrábica/genética , Vacina Antirrábica/imunologia , Suínos , Linfócitos T , Vacinas Sintéticas/imunologia
5.
Hum Vaccin Immunother ; 9(10): 2263-76, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23921513

RESUMO

Nucleotide based vaccines represent an enticing, novel approach to vaccination. We have developed a novel immunization technology, RNActive(®) vaccines, that have two important characteristics: mRNA molecules are used whose protein expression capacity has been enhanced by 4 to 5 orders of magnitude by modifications of the nucleotide sequence with the naturally occurring nucleotides A (adenosine), G (guanosine), C (cytosine), U (uridine) that do not affect the primary amino acid sequence. Second, they are complexed with protamine and thus activate the immune system by involvement of toll-like receptor (TLR) 7. Essentially, this bestows self-adjuvant activity on RNActive(®) vaccines. RNActive(®) vaccines induce strong, balanced immune responses comprising humoral and cellular responses, effector and memory responses as well as activation of important subpopulations of immune cells, such as Th1 and Th2 cells. Pre-germinal center and germinal center B cells were detected in human patients upon vaccination. RNActive(®) vaccines successfully protect against lethal challenges with a variety of different influenza strains in preclinical models. Anti-tumor activity was observed preclinically under therapeutic as well as prophylactic conditions. Initial clinical experiences suggest that the preclinical immunogenicity of RNActive(®) could be successfully translated to humans.


Assuntos
Vacinas Anticâncer/administração & dosagem , Vacinas Anticâncer/imunologia , RNA/administração & dosagem , RNA/imunologia , Vacinas Virais/administração & dosagem , Vacinas Virais/imunologia , Humanos , Receptor 7 Toll-Like/imunologia , Vacinação/métodos
6.
Antiviral Res ; 95(1): 12-8, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22580129

RESUMO

Certain viral protein-protein interactions provide attractive targets for antiviral drug development. Recently, we described a ß-lactamase based protein fragment complementation assay (PCA) to study the core interaction of the nuclear egress complex (NEC) of different herpesviruses in cells. Now, to have a cell free assay for inhibitor screens, we expressed split ß-lactamase tagged interaction domains of the viral pUL50 and pUL53 proteins representing the NEC of human cytomegalovirus (HCMV) in bacteria. After validation and basic characterization of this NEC-PCA, we tested peptide inhibitors of the pUL50-pUL53 complex. We show that peptides resembling sequences of the first conserved region of pUL53 can inhibit the NEC-PCA. This, on one hand, indicated that the core interaction in the HCMV NEC is mediated by a linear motif. On the other hand it proved that this new pUL50-pUL53 interaction assay allows a simple cell free test for small molecular inhibitors.


Assuntos
Citomegalovirus/fisiologia , Proteínas Virais/metabolismo , Virologia/métodos , Liberação de Vírus , Antivirais/farmacologia , Bactérias , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Ligação Proteica , beta-Lactamases/metabolismo
7.
Nat Biotechnol ; 30(12): 1210-6, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23159882

RESUMO

Despite substantial improvements, influenza vaccine production-and availability-remain suboptimal. Influenza vaccines based on mRNA may offer a solution as sequence-matched, clinical-grade material could be produced reliably and rapidly in a scalable process, allowing quick response to the emergence of pandemic strains. Here we show that mRNA vaccines induce balanced, long-lived and protective immunity to influenza A virus infections in even very young and very old mice and that the vaccine remains protective upon thermal stress. This vaccine format elicits B and T cell-dependent protection and targets multiple antigens, including the highly conserved viral nucleoprotein, indicating its usefulness as a cross-protective vaccine. In ferrets and pigs, mRNA vaccines induce immunological correlates of protection and protective effects similar to those of a licensed influenza vaccine in pigs. Thus, mRNA vaccines could address substantial medical need in the area of influenza prophylaxis and the broader realm of anti-infective vaccinology.


Assuntos
Vírus da Influenza A/genética , Vírus da Influenza A/imunologia , Vacinas contra Influenza/genética , Vacinas contra Influenza/imunologia , RNA Mensageiro/genética , RNA Mensageiro/imunologia , Envelhecimento/imunologia , Animais , Animais Recém-Nascidos , Linfócitos B/imunologia , Biotecnologia , Proteção Cruzada , Feminino , Furões , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Dados de Sequência Molecular , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , RNA Viral/genética , RNA Viral/imunologia , Ratos , Ratos Endogâmicos Lew , Sus scrofa , Linfócitos T/imunologia , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia
8.
J Virol ; 80(23): 11658-66, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17005637

RESUMO

The proteins encoded by the UL34 and UL31 genes of herpes simplex virus are conserved among herpesviruses. They form a complex that is essential for the egress of the herpesvirus nucleocapsids from the nucleus. In previous work on the homologous protein complex in murine cytomegalovirus (MCMV), we defined their mutual binding domains. Here, we started to map binding domains within the UL34/UL31 proteins of alpha-, beta-, and gammaherpesviruses and to locate other functional properties. A protein complementation assay (PCA) using the TEM-1 beta-lactamase fragments fused to UL31 and UL34 protein homologues was used to study protein-protein interactions in cells. Wild-type MCMV M50 and M53 provided a strong reaction in the PCA, whereas mutants unable to form a complex did not. The homologous pairs of herpes simplex virus type 1, pseudorabies virus, human cytomegalovirus (HCMV), Epstein-Barr virus (EBV), and murine herpes virus 68 proteins also reacted, with the exception of the EBV proteins. Cross-complementation was found to be positive only within the same herpesvirus subfamily. Moreover, the HCMV homologues rescued replication-defective MCMV genomes lacking one or the other gene. We identified the binding site of M53 for M50 in the first conserved region (CR1) (M. Loetzerich, Z. Ruzsics, and U. H. Koszinowski, J. Virol. 80:73-84). Here we show that the CR1 of all tested UL31 proteins contains the UL34 binding site, and chimeric proteins carrying the subfamily-specific CR1 rescued the ability to cross-complement in the PCA.


Assuntos
Herpesvirus Humano 1/fisiologia , Proteínas Nucleares/metabolismo , Mapeamento de Interação de Proteínas , Proteínas Virais/metabolismo , Animais , Linhagem Celular Tumoral , Herpesvirus Humano 1/genética , Proteínas Nucleares/química , Proteínas Nucleares/genética , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Virais/química , Proteínas Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA