Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Rev Lett ; 121(11): 112002, 2018 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-30265118

RESUMO

The π^{0} pole constitutes the lowest-lying singularity of the hadronic light-by-light (HLBL) tensor, and thus, it provides the leading contribution in a dispersive approach to HLBL scattering in the anomalous magnetic moment of the muon (g-2)_{µ}. It is unambiguously defined in terms of the doubly virtual pion transition form factor, which in principle, can be accessed in its entirety by experiment. We demonstrate that, in the absence of a direct measurement, the full spacelike doubly virtual form factor can be reconstructed very accurately based on existing data for e^{+}e^{-}→3π, e^{+}e^{-}→e^{+}e^{-}π^{0}, and the π^{0}→γγ decay width. We derive a representation that incorporates all the low-lying singularities of the form factor, matches correctly onto the asymptotic behavior expected from perturbative QCD, and is suitable for the evaluation of the (g-2)_{µ} loop integral. The resulting value, a_{µ}^{π^{0}-pole}=62.6_{-2.5}^{+3.0}×10^{-11}, for the first time, represents a complete data-driven determination of the pion-pole contribution with fully controlled uncertainty estimates. In particular, we show that already improved singly virtual measurements alone would allow one to further reduce the uncertainty in a_{µ}^{π^{0}-pole}.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA