Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Nano Lett ; 23(7): 2467-2475, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-36975035

RESUMO

Mechanical signals establish two-way communication between mammalian cells and their environment. Cells contacting a surface exert forces via contractility and transmit them at the areas of focal adhesions. External stimuli, such as compressive and pulling forces, typically affect the adhesion-free cell surface. Here, we demonstrate the collaborative employment of Fluidic Force Microscopy and confocal Traction Force Microscopy supported by the Cellogram solver to enable a powerful integrated force probing approach, where controlled vertical forces are applied to the free surface of individual cells, while the concomitant deformations are used to map their transmission to the substrate. Force transmission across human cells is measured with unprecedented temporal and spatial resolution, enabling the investigation of the cellular mechanisms involved in the adaptation, or maladaptation, to external mechanical stimuli. Altogether, the system enables facile and precise force interrogation of individual cells, with the capacity to perform population-based analysis.


Assuntos
Adesão Celular , Matriz Extracelular , Adesões Focais , Mecanotransdução Celular , Animais , Humanos , Adesão Celular/fisiologia , Membrana Celular/fisiologia , Adesões Focais/metabolismo , Adesões Focais/fisiologia , Mamíferos/anatomia & histologia , Mamíferos/fisiologia , Fenômenos Mecânicos , Mecanotransdução Celular/fisiologia , Microscopia de Força Atômica/métodos , Matriz Extracelular/fisiologia
2.
Nano Lett ; 19(10): 6742-6750, 2019 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-31538794

RESUMO

Traction force microscopy (TFM) derives maps of cell-generated forces, typically in the nanonewton range, transmitted to the extracellular environment upon actuation of complex biological processes. In traditional approaches, force rendering requires a terminal, time-consuming step of cell deadhesion to obtain a reference image. A conceptually opposite approach is provided by reference-free methods, opening to the on-the-fly generation of force maps from an ongoing experiment. This requires an image processing algorithm keeping the pace of the biological phenomena under investigation. Here, we introduce an integrated software pipeline rendering force maps from single reference-free TFM images seconds to minutes after their acquisition. The algorithm tackles image processing, reference image estimation, and finite element analysis as a single problem, yielding a robust and fully automatic solution. The method's capabilities are demonstrated in two applications. First, the mechanical annihilation of cancer cells is monitored as a function of rising environmental temperature, setting a population threshold at 45 °C. Second, the fast temporal correlation of forces produced across individual cells is used to map physically connected adhesion points, yielding typical lengths that vary as a function of the cell cycle phase.

3.
Comput Methods Programs Biomed ; 244: 107938, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38056313

RESUMO

BACKGROUND AND OBJECTIVES: Finite element simulations are widely employed as a non-invasive and cost-effective approach for predicting outcomes in biomechanical simulations. However, traditional finite element software, primarily designed for engineering materials, often encountered limitations in contact detection and enforcement, leading to simulation failure when dealing with complex biomechanical configurations. Currently, a lot of model tuning is required to get physically accurate finite element simulations without failures. This adds significant human interaction to each iteration of a biomechanical model. This study addressed these issues by introducing PolyFEM, a novel finite element solver that guarantees inversion- and intersection-free solutions with completely automatic collision detection. The objective of this research is to validate PolyFEM's capabilities by comparing its results with those obtained from a well-established finite element solver, FEBio. METHODS: To achieve this goal, five comparison scenarios were formulated to assess and validate PolyFEM's performance. The simulations were reproduced using both PolyFEM and FEBio, and the final results were compared. The five comparison scenarios included: (1) reproducing simulations from the FEBio test suite, consisting of static, dynamic, and contact-driven simulations; (2) replicating simulations from the verification paper published alongside the original release of FEBio; (3) a biomechanically based contact problem; (4) creating a custom simulation involving high-energy collisions between soft materials to highlight the difference in collision methods between the two solvers; and (5) performing biomechanical simulations of biting and quasi-stance. RESULTS: We found that PolyFEM was capable of replicating all simulations previously conducted in FEBio. Particularly noteworthy is PolyFEM's superiority in high-energy contact simulations, where FEBio fell short, unable to complete over half of the simulations in Scenario 4. Although some of the simulations required significantly more simulation time in PolyFEM compared to FEBio, it is important to highlight that PolyFEM achieved these results without the need for any additional model tuning or contact declaration. DISCUSSION: Despite being in the early stages of development, PolyFEM currently provides verified solutions for hyperelastic materials that are consistent with FEBio, both in previously published workflows and novel finite element scenarios. PolyFEM exhibited the ability to tackle challenging biomechanical problems where other solvers fell short, thus offering the potential to enhance the accuracy and realism of future finite element analyses.


Assuntos
Software , Humanos , Simulação por Computador , Fenômenos Biomecânicos , Análise de Elementos Finitos
4.
Nat Cell Biol ; 24(2): 194-204, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35165417

RESUMO

During animal embryogenesis, homeostasis and disease, tissues push and pull on their surroundings to move forward. Although the force-generating machinery is known, it is unknown how tissues exert physical stresses on their substrate to generate motion in vivo. Here, we identify the force transmission machinery, the substrate and the stresses that a tissue, the zebrafish posterior lateral line primordium, generates during its migration. We find that the primordium couples actin flow through integrins to the basement membrane for forward movement. Talin- and integrin-mediated coupling is required for efficient migration, and its loss is partially compensated for by increased actin flow. Using Embryogram, an approach to measure stresses in vivo, we show that the rear of the primordium exerts higher stresses than the front, which suggests that this tissue pushes itself forward with its back. This unexpected strategy probably also underlies the motion of other tissues in animals.


Assuntos
Membrana Basal/fisiologia , Quimiotaxia , Embrião não Mamífero/fisiologia , Mecanotransdução Celular , Actinas/metabolismo , Animais , Animais Geneticamente Modificados , Membrana Basal/metabolismo , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Embrião não Mamífero/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Integrinas/genética , Integrinas/metabolismo , Morfogênese , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Estresse Mecânico , Talina/genética , Talina/metabolismo , Fatores de Tempo , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
5.
Comput Methods Programs Biomed ; 224: 107009, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35872385

RESUMO

BACKGROUND: State-of-the-art finite element studies on human jaws are mostly limited to the geometry of a single patient. In general, developing accurate patient-specific computational models of the human jaw acquired from cone-beam computed tomography (CBCT) scans is labor-intensive and non-trivial, which involves time-consuming human-in-the-loop procedures, such as segmentation, geometry reconstruction, and re-meshing tasks. Therefore, with the current practice, researchers need to spend considerable time and effort to produce finite element models (FEMs) to get to the point where they can use the models to answer clinically-interesting questions. Besides, any manual task involved in the process makes it difficult for the researchers to reproduce identical models generated in the literature. Hence, a quantitative comparison is not attainable due to the lack of surface/volumetric meshes and FEMs. METHODS: We share an open-access repository composed of 17 patient-specific computational models of human jaws and the utilized pipeline for generating them for reproducibility of our work. The used pipeline minimizes the required time for processing and any potential biases in the model generation process caused by human intervention. It gets the segmented geometries with irregular and dense surface meshes and provides reduced, adaptive, watertight, and conformal surface/volumetric meshes, which can directly be used in finite element (FE) analysis. RESULTS: We have quantified the variability of our 17 models and assessed the accuracy of the developed models from three different aspects; (1) the maximum deviations from the input meshes using the Hausdorff distance as an error measurement, (2) the quality of the developed volumetric meshes, and (3) the stability of the FE models under two different scenarios of tipping and biting. CONCLUSIONS: The obtained results indicate that the developed computational models are precise, and they consist of quality meshes suitable for various FE scenarios. We believe the provided dataset of models including a high geometrical variation obtained from 17 different models will pave the way for population studies focusing on the biomechanical behavior of human jaws.


Assuntos
Arcada Osseodentária , Análise de Elementos Finitos , Humanos , Arcada Osseodentária/diagnóstico por imagem , Reprodutibilidade dos Testes
6.
Comput Methods Programs Biomed ; 226: 107140, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36162245

RESUMO

BACKGROUND AND OBJECTIVE: population-based finite element analysis of hip joints allows us to understand the effect of inter-subject variability on simulation results. Developing large subject-specific population models is challenging and requires extensive manual effort. Thus, the anatomical representations are often subjected to simplification. The discretized geometries do not guarantee conformity in shared interfaces, leading to complications in setting up simulations. Additionally, these models are not openly accessible, challenging reproducibility. Our work provides multiple subject-specific hip joint finite element models and a novel semi-automated modeling workflow. METHODS: we reconstruct 11 healthy subject-specific models, including the sacrum, the paired pelvic bones, the paired proximal femurs, the paired hip joints, the paired sacroiliac joints, and the pubic symphysis. The bones are derived from CT scans, and the cartilages are generated from the bone geometries. We generate the whole complex's volume mesh with conforming interfaces. Our models are evaluated using both mesh quality metrics and simulation experiments. RESULTS: the geometry of all the models are inspected by our clinical expert and show high-quality discretization with accurate geometries. The simulations produce smooth stress patterns, and the variance among the subjects highlights the effect of inter-subject variability and asymmetry in the predicted results. CONCLUSIONS: our work is one of the largest model repositories with respect to the number of subjects and regions of interest in the hip joint area. Our detailed research data, including the clinical images, the segmentation label maps, the finite element models, and software tools, are openly accessible on GitHub and the link is provided in Moshfeghifar et al.(2022)[1]. Our aim is to empower clinical researchers to have free access to verified and reproducible models. In future work, we aim to add additional structures to our models.


Assuntos
Articulação do Quadril , Pelve , Humanos , Análise de Elementos Finitos , Reprodutibilidade dos Testes , Articulação do Quadril/diagnóstico por imagem , Simulação por Computador , Pelve/diagnóstico por imagem , Fenômenos Biomecânicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA