Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Hum Mol Genet ; 31(12): 2049-2062, 2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35024855

RESUMO

The SLC25A26 gene encodes a mitochondrial inner membrane carrier that transports S-adenosylmethionine (SAM) into the mitochondrial matrix in exchange for S-adenosylhomocysteine (SAH). SAM is the predominant methyl-group donor for most cellular methylation processes, of which SAH is produced as a by-product. Pathogenic, biallelic SLC25A26 variants are a recognized cause of mitochondrial disease in children, with a severe neonatal onset caused by decreased SAM transport activity. Here, we describe two, unrelated adult cases, one of whom presented with recurrent episodes of severe abdominal pain and metabolic decompensation with lactic acidosis. Both patients had exercise intolerance and mitochondrial myopathy associated with biallelic variants in SLC25A26, which led to marked respiratory chain deficiencies and mitochondrial histopathological abnormalities in skeletal muscle that are comparable to those previously described in early-onset cases. We demonstrate using both mouse and fruit fly models that impairment of SAH, rather than SAM, transport across the mitochondrial membrane is likely the cause of this milder, late-onset phenotype. Our findings associate a novel pathomechanism with a known disease-causing protein and highlight the quests of precision medicine in optimizing diagnosis, therapeutic intervention and prognosis.


Assuntos
Doenças Mitocondriais , S-Adenosil-Homocisteína , Animais , Metilação , Camundongos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Doenças Mitocondriais/metabolismo , S-Adenosil-Homocisteína/metabolismo , S-Adenosilmetionina/metabolismo
2.
PLoS Genet ; 15(7): e1008240, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31365523

RESUMO

The RNA helicase SUV3 and the polynucleotide phosphorylase PNPase are involved in the degradation of mitochondrial mRNAs but their roles in vivo are not fully understood. Additionally, upstream processes, such as transcript maturation, have been linked to some of these factors, suggesting either dual roles or tightly interconnected mechanisms of mitochondrial RNA metabolism. To get a better understanding of the turn-over of mitochondrial RNAs in vivo, we manipulated the mitochondrial mRNA degrading complex in Drosophila melanogaster models and studied the molecular consequences. Additionally, we investigated if and how these factors interact with the mitochondrial poly(A) polymerase, MTPAP, as well as with the mitochondrial mRNA stabilising factor, LRPPRC. Our results demonstrate a tight interdependency of mitochondrial mRNA stability, polyadenylation and the removal of antisense RNA. Furthermore, disruption of degradation, as well as polyadenylation, leads to the accumulation of double-stranded RNAs, and their escape out into the cytoplasm is associated with an altered immune-response in flies. Together our results suggest a highly organised and inter-dependable regulation of mitochondrial RNA metabolism with far reaching consequences on cellular physiology.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , RNA Mitocondrial/química , RNA Mitocondrial/metabolismo , Animais , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Feminino , Masculino , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Poliadenilação , Polirribonucleotídeo Nucleotidiltransferase/genética , Polirribonucleotídeo Nucleotidiltransferase/metabolismo , Estabilidade de RNA , RNA Antissenso/química , RNA Antissenso/metabolismo , RNA de Cadeia Dupla/química , RNA de Cadeia Dupla/metabolismo
3.
Hum Mutat ; 42(4): 378-384, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33502047

RESUMO

Mutations in structural subunits and assembly factors of complex I of the oxidative phosphorylation system constitute the most common cause of mitochondrial respiratory chain defects. Such mutations can present a wide range of clinical manifestations, varying from mild deficiencies to severe, lethal disorders. We describe a patient presenting intrauterine growth restriction and anemia, which displayed postpartum hypertrophic cardiomyopathy, lactic acidosis, encephalopathy, and a severe complex I defect with fatal outcome. Whole genome sequencing revealed an intronic biallelic mutation in the NDUFB7 gene (c.113-10C>G) and splicing pattern alterations in NDUFB7 messenger RNA were confirmed by RNA Sequencing. The detected variant resulted in a significant reduction of the NDUFB7 protein and reduced complex I activity. Complementation studies with expression of wild-type NDUFB7 in patient fibroblasts normalized complex I function. Here we report a case with a primary complex I defect due to a homozygous mutation in an intron region of the NDUFB7 gene.


Assuntos
Acidose Láctica , Cardiomiopatia Hipertrófica , Doenças Mitocondriais , NADH NADPH Oxirredutases/genética , Acidose Láctica/genética , Cardiomiopatia Hipertrófica/genética , Complexo I de Transporte de Elétrons/genética , Humanos , Doenças Mitocondriais/genética , Mutação
4.
EMBO Rep ; 20(6)2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31036713

RESUMO

Regulation of replication and expression of mitochondrial DNA (mtDNA) is essential for cellular energy conversion via oxidative phosphorylation. The mitochondrial transcription elongation factor (TEFM) has been proposed to regulate the switch between transcription termination for replication primer formation and processive, near genome-length transcription for mtDNA gene expression. Here, we report that Tefm is essential for mouse embryogenesis and that levels of promoter-distal mitochondrial transcripts are drastically reduced in conditional Tefm-knockout hearts. In contrast, the promoter-proximal transcripts are much increased in Tefm knockout mice, but they mostly terminate before the region where the switch from transcription to replication occurs, and consequently, de novo mtDNA replication is profoundly reduced. Unexpectedly, deep sequencing of RNA from Tefm knockouts revealed accumulation of unprocessed transcripts in addition to defective transcription elongation. Furthermore, a proximity-labeling (BioID) assay showed that TEFM interacts with multiple RNA processing factors. Our data demonstrate that TEFM acts as a general transcription elongation factor, necessary for both gene transcription and replication primer formation, and loss of TEFM affects RNA processing in mammalian mitochondria.


Assuntos
Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Processamento Pós-Transcricional do RNA , Elongação da Transcrição Genética , Fatores de Transcrição/metabolismo , Animais , DNA Mitocondrial , Desenvolvimento Embrionário/genética , Deleção de Genes , Regulação da Expressão Gênica , Loci Gênicos , Heterozigoto , Camundongos , Camundongos Knockout , Mitocôndrias/ultraestrutura , Fenótipo , Regiões Promotoras Genéticas
5.
Nucleic Acids Res ; 47(17): 9386-9399, 2019 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-31396629

RESUMO

In all biological systems, RNAs are associated with RNA-binding proteins (RBPs), forming complexes that control gene regulatory mechanisms, from RNA synthesis to decay. In mammalian mitochondria, post-transcriptional regulation of gene expression is conducted by mitochondrial RBPs (mt-RBPs) at various stages of mt-RNA metabolism, including polycistronic transcript production, its processing into individual transcripts, mt-RNA modifications, stability, translation and degradation. To date, only a handful of mt-RBPs have been characterized. Here, we describe a putative human mitochondrial protein, C6orf203, that contains an S4-like domain-an evolutionarily conserved RNA-binding domain previously identified in proteins involved in translation. Our data show C6orf203 to bind highly structured RNA in vitro and associate with the mitoribosomal large subunit in HEK293T cells. Knockout of C6orf203 leads to a decrease in mitochondrial translation and consequent OXPHOS deficiency, without affecting mitochondrial RNA levels. Although mitoribosome stability is not affected in C6orf203-depleted cells, mitoribosome profiling analysis revealed a global disruption of the association of mt-mRNAs with the mitoribosome, suggesting that C6orf203 may be required for the proper maturation and functioning of the mitoribosome. We therefore propose C6orf203 to be a novel RNA-binding protein involved in mitochondrial translation, expanding the repertoire of factors engaged in this process.


Assuntos
Mitocôndrias/genética , Proteínas Mitocondriais/biossíntese , RNA Mitocondrial/genética , Proteínas de Ligação a RNA/genética , Animais , Células HEK293 , Humanos , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/fisiologia , Ribossomos Mitocondriais/metabolismo , RNA Mensageiro/genética , RNA Ribossômico/genética , Proteínas de Ligação a RNA/fisiologia
6.
Hum Mol Genet ; 26(13): 2515-2525, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28430993

RESUMO

Mutations in the mitochondrial DNA polymerase, POLG, are associated with a variety of clinical presentations, ranging from early onset fatal brain disease in Alpers syndrome to chronic progressive external ophthalmoplegia. The majority of mutations are linked with disturbances of mitochondrial DNA (mtDNA) integrity and maintenance. On a molecular level, depending on their location within the enzyme, mutations either lead to mtDNA depletion or the accumulation of multiple mtDNA deletions, and in some cases these molecular changes can be correlated to the clinical presentation. We identified a patient with a dominant p.Y955H mutation in POLG, presenting with a severe, early-onset multi-systemic mitochondrial disease with bilateral sensorineural hearing loss, cataract, myopathy, and liver failure. Using a combination of disease models of Drosophila melanogaster and in vitro biochemistry analysis, we compare the molecular consequences of the p.Y955H mutation to the well-documented p.Y955C mutation. We demonstrate that both mutations affect mtDNA replication and display a dominant negative effect, with the p.Y955H allele resulting in a more severe polymerase dysfunction.


Assuntos
DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Adulto , Sequência de Aminoácidos , Animais , DNA Polimerase gama , Replicação do DNA/genética , DNA Mitocondrial/genética , Modelos Animais de Doenças , Drosophila melanogaster/genética , Feminino , Humanos , Lactente , Mitocôndrias/genética , Mutação/genética , Oftalmoplegia Externa Progressiva Crônica/enzimologia , Linhagem , Fenótipo
7.
Nat Commun ; 13(1): 5750, 2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-36180430

RESUMO

Canonical RNA processing in mammalian mitochondria is defined by tRNAs acting as recognition sites for nucleases to release flanking transcripts. The relevant factors, their structures, and mechanism are well described, but not all mitochondrial transcripts are punctuated by tRNAs, and their mode of processing has remained unsolved. Using Drosophila and mouse models, we demonstrate that non-canonical processing results in the formation of 3' phosphates, and that phosphatase activity by the carbon catabolite repressor 4 domain-containing family member ANGEL2 is required for their hydrolysis. Furthermore, our data suggest that members of the FAST kinase domain-containing protein family are responsible for these 3' phosphates. Our results therefore propose a mechanism for non-canonical RNA processing in metazoan mitochondria, by identifying the role of ANGEL2.


Assuntos
Processamento Pós-Transcricional do RNA , RNA , Animais , Carbono/metabolismo , Drosophila , Exorribonucleases , Mamíferos/genética , Camundongos , Fosfatos/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , RNA/metabolismo , RNA Mitocondrial/genética , RNA Mitocondrial/metabolismo , RNA de Transferência/metabolismo
8.
Methods Mol Biol ; 2192: 75-87, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33230767

RESUMO

Protein-focused research has been challenging in Drosophila melanogaster due to few specific antibodies for Western blotting and the lack of effective labeling methods for quantitative proteomics. Herein, we describe the preparation of a holidic medium that allows stable-isotope labeling of amino acids in fruit flies (SILAF). Furthermore, in this chapter, we provide a protocol for mitochondrial enrichments from Drosophila larvae and flies together with a procedure to generate high-quality peptides for further analysis by mass spectrometry. Samples obtained following this protocol can be used for various functional studies such as comprehensive proteome profiling or quantitative analysis of posttranslational modifications upon enrichment. SILAF is based on standard fly routines in a basic wet lab environment and provides a flexible and cost-effective tool for quantitative protein expression analysis.


Assuntos
Aminoácidos/química , Drosophila melanogaster/metabolismo , Marcação por Isótopo/métodos , Proteoma , Proteômica/métodos , Aminoácidos/metabolismo , Animais , Meios de Cultura/química , Larva/metabolismo , Espectrometria de Massas/métodos , Mitocôndrias/metabolismo , Peptídeos/metabolismo , Processamento de Proteína Pós-Traducional
9.
Front Neurol ; 12: 652590, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33841319

RESUMO

Leber hereditary optic neuropathy (LHON) is a mitochondrial disease causing severe bilateral visual loss, typically in young adults. The disorder is commonly caused by one of three primary point mutations in mitochondrial DNA, but a number of other rare mutations causing or associated with the clinical syndrome of LHON have been reported. The mutations in LHON are almost exclusively located in genes encoding subunits of complex I in the mitochondrial respiratory chain. Here we report two patients, a mother and her son, with the typical LHON phenotype. Genetic investigations for the three common mutations were negative, instead we found a new and previously unreported mutation in mitochondrial DNA. This homoplasmic mutation, m.13345G>A, is located in the MT-ND5 gene, encoding a core subunit in complex I in the mitochondrial respiratory chain. Investigation of the patients mitochondrial respiratory chain in muscle found a mild defect in the combined activity of complex I+III. In the literature six other mutations in the MT-ND5 gene have been associated with LHON and by this report a new putative mutation in the MT-ND5 can be added.

10.
Neurol Genet ; 7(2): e566, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33732874

RESUMO

OBJECTIVE: To investigate the pathogenicity of a novel MT-ND3 mutation identified in a patient with adult-onset sensorimotor axonal polyneuropathy and report the clinical, morphologic, and biochemical findings. METHODS: Clinical assessments and morphologic and biochemical investigations of skeletal muscle and cultured myoblasts from the patient were performed. Whole-genome sequencing (WGS) of DNA from skeletal muscle and Sanger sequencing of mitochondrial DNA (mtDNA) from both skeletal muscle and cultured myoblasts were performed. Heteroplasmic levels of mutated mtDNA in different tissues were quantified by last-cycle hot PCR. RESULTS: Muscle showed ragged red fibers, paracrystalline inclusions, a significant reduction in complex I (CI) respiratory chain (RC) activity, and decreased adenosine triphosphate (ATP) production for all substrates used by CI. Sanger sequencing of DNA from skeletal muscle detected a unique previously unreported heteroplasmic mutation in mtDNA encoded MT-ND3, coding for a subunit in CI. WGS confirmed the mtDNA mutation but did not detect any other mutation explaining the disease. Cultured myoblasts, however, did not carry the mutation, and RC activity measurements in myoblasts were normal. CONCLUSIONS: We report a case with adult-onset sensorimotor axonal polyneuropathy caused by a novel mtDNA mutation in MT-ND3. Loss of heteroplasmy in blood, cultured fibroblasts and myoblasts from the patient, and normal measurement of RC activity of the myoblasts support pathogenicity of the mutation. These findings highlight the importance of mitochondrial investigations in patients presenting with seemingly idiopathic polyneuropathy, especially if muscle also is affected.

11.
EMBO Mol Med ; 12(7): e11659, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32525278

RESUMO

Pathogenic variants in FBXL4 cause a severe encephalopathic syndrome associated with mtDNA depletion and deficient oxidative phosphorylation. To gain further insight into the enigmatic pathophysiology caused by FBXL4 deficiency, we generated homozygous Fbxl4 knockout mice and found that they display a predominant perinatal lethality. Surprisingly, the few surviving animals are apparently normal until the age of 8-12 months when they gradually develop signs of mitochondrial dysfunction and weight loss. One-year-old Fbxl4 knockouts show a global reduction in a variety of mitochondrial proteins and mtDNA depletion, whereas lysosomal proteins are upregulated. Fibroblasts from patients with FBXL4 deficiency and human FBXL4 knockout cells also have reduced steady-state levels of mitochondrial proteins that can be attributed to increased mitochondrial turnover. Inhibition of lysosomal function in these cells reverses the mitochondrial phenotype, whereas proteasomal inhibition has no effect. Taken together, the results we present here show that FBXL4 prevents mitochondrial removal via autophagy and that loss of FBXL4 leads to decreased mitochondrial content and mitochondrial disease.


Assuntos
Autofagia , Mitocôndrias/patologia , Doenças Mitocondriais/patologia , Ubiquitina-Proteína Ligases/deficiência , Animais , Autofagia/genética , DNA Mitocondrial/genética , Proteínas F-Box/genética , Feminino , Deleção de Genes , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/genética , Doenças Mitocondriais/genética , Proteínas Mitocondriais/genética , Fenótipo , Ubiquitina-Proteína Ligases/genética
12.
Stem Cell Reports ; 12(4): 696-711, 2019 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-30827875

RESUMO

Neurodegenerative disorders are an increasingly common and irreversible burden on society, often affecting the aging population, but their etiology and disease mechanisms are poorly understood. Studying monogenic neurodegenerative diseases with known genetic cause provides an opportunity to understand cellular mechanisms also affected in more complex disorders. We recently reported that loss-of-function mutations in the autophagy adaptor protein SQSTM1/p62 lead to a slowly progressive neurodegenerative disease presenting in childhood. To further elucidate the neuronal involvement, we studied the cellular consequences of loss of p62 in a neuroepithelial stem cell (NESC) model and differentiated neurons derived from reprogrammed p62 patient cells or by CRISPR/Cas9-directed gene editing in NESCs. Transcriptomic and proteomic analyses suggest that p62 is essential for neuronal differentiation by controlling the metabolic shift from aerobic glycolysis to oxidative phosphorylation required for neuronal maturation. This shift is blocked by the failure to sufficiently downregulate lactate dehydrogenase expression due to the loss of p62, possibly through impaired Hif-1α downregulation and increased sensitivity to oxidative stress. The findings imply an important role for p62 in neuronal energy metabolism and particularly in the regulation of the shift between glycolysis and oxidative phosphorylation required for normal neurodifferentiation.


Assuntos
Diferenciação Celular/genética , Reprogramação Celular/genética , Metabolismo Energético/genética , Proteína Sequestossoma-1/genética , Perfilação da Expressão Gênica , Glicólise , Humanos , Mitofagia , Modelos Biológicos , Doenças Neurodegenerativas/etiologia , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Neurônios/citologia , Neurônios/metabolismo , Fosforilação Oxidativa , Estresse Oxidativo , Oxigênio/metabolismo , Proteína Sequestossoma-1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA