Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Plant Dis ; 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37093167

RESUMO

Lettuce ring necrosis virus (LRNV), genus Ophiovirus, was detected by the Netherlands Institute for Vectors, Invasive plants and Plant health (NIVIP) in June and November of 2021 in two samples of chili pepper fruits (Capsicum spp.), both in mixed infection with other viruses. The first sample originated from a production site in Belgium (Sample ID: 40009704) and the second from a production site in the Netherlands (Sample ID: 41115269). One of the fruits of 40009704 showed a light purple circular pattern, while fruits from 41115269 showed colored (ring)spots. The samples were analyzed using Illumina sequencing on a NovaSeq 6000 platform (PE 150) as described previously (Hammond et al., 2021), obtaining 39.9M and 22.8M total reads for 40009704 and 41115269. The corresponding sequence read archives (SRA) were deposited in the NCBI SRA database under BioProject accession number PRJNA917231. From both samples, the nearly complete genome of LRNV (RNA1-4) was obtained and deposited in GenBank (40009704, OQ160823- OQ160826 (7616, 1799, 1502, 1382 nt, mapped reads: 40K, 12K, 114K, 12K , average read coverage (ARC): 0.8K, 0.9K, 11.3K and 1.1K); 41115269, OQ160827- OQ160830 (7616, 1801, 1518, 1389 nt, mapped reads: 112K, 7K, 357K, 55K reads, ARC: 2.2K, 0.6K, 34K and 5.8K)). The shared sequence identities with the Genbank reference sequence of LRNV (NC_006051-NC_006051) were 99.2 and 99.2% (RNA1), 99.1 and 99.1% (RNA2), 98.3 and 98.8% (RNA3), 99.0 and 98.9% (RNA4) for 40009704 and 41115269 respectively. The shared sequence identities between 40009704 and 41115269 were 99.9 (RNA1), 99.0 (RNA2), 99.1 (RNA3) and 99.5% (RNA4). In addition to LRNV, the ophiovirus ranunculus white mottle virus (RWMV) was detected in both samples (OQ160831-OQ160834; OQ160835-OQ160838), while the tobamovirus pepper mild mottle virus (PMMoV) was present in the fruits of 41115269 (OQ160839). Since RWMV has been associated with leaf symptoms in pepper (Gambley et al., 2019; Rivarez et al., 2022) and the colored (ring)spots of 41115269 were very similar to reported symptoms of PMMoV-infected pepper fruits (Martínez-Ochoa et al., 2003), it remains unclear whether LRNV contributed to the observed symptoms. Additionally, LRNV was detected in tomato (Solanum lycopersicum) in Belgium in 2020. In the frame of a metagenomic survey using Virion-Associated Nucleic Acids (VANA)-based protocol (Maclot et al., 2021) on a Nextseq 500 platform (PE 150), partial genome sequences of LRNV were detected in two pools of tomato plants. One pool was made of 44 asymptomatic cultivars from a non-commercial grower (one sample per cultivar) yielding 118K total reads of which 84, 59, 335, and 18 reads mapped on RNA1, 2, 3, and 4, covering 35%, 69%, 100% and 55% of the genome, respectively. The other pool consisted of 15 plants from one cultivar from a production site yielding 3.1M total reads of which 6 and 5 reads mapped on RNA3 and 4, respectively. The detection of LRNV was confirmed for both pooled samples using the real-time RT-PCR method, targeting the CP gene, as described by Maachi et al. (2021). To our knowledge this is the first report of LRNV in pepper anywhere in the world. Additionally, although the disease lettuce ring necrosis in lettuce (Lactuca sativa) has been described in Belgium and the Netherlands before the causal agent was identified (Bos & Huijberts, 1996), this is the first official report of this virus in Belgium and the Netherlands. This publication resulted from pre-publication data sharing of sequences and biological data among plant virologists to provide more context to two independent findings (Hammond et al., 2021).

2.
Plant Dis ; 106(11): 2797-2807, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35394335

RESUMO

Application of high throughput sequencing (HTS) technologies enabled the first identification of Physostegia chlorotic mottle virus (PhCMoV) in 2018 in Austria. Subsequently, PhCMoV was detected in Germany and Serbia on tomatoes showing severe fruit mottling and ripening anomalies. We report here how prepublication data-sharing resulted in an international collaboration across eight laboratories in five countries, enabling an in-depth characterization of PhCMoV. The independent studies converged toward its recent identification in eight additional European countries and confirmed its presence in samples collected 20 years ago (2002). The natural plant host range was expanded from two to nine species across seven families, and we confirmed the association of PhCMoV presence with severe fruit symptoms on economically important crops such as tomato, eggplant, and cucumber. Mechanical inoculations of selected isolates in the greenhouse established the causality of the symptoms on a new indexing host range. In addition, phylogenetic analysis showed a low genomic variation across the 29 near-complete genome sequences available. Furthermore, a strong selection pressure within a specific ecosystem was suggested by nearly identical sequences recovered from different host plants through time. Overall, this study describes the European distribution of PhCMoV on multiple plant hosts, including economically important crops on which the virus can cause severe fruit symptoms. This work demonstrates how to efficiently improve knowledge on an emergent pathogen by sharing HTS data and provides a solid knowledge foundation for further studies on plant rhabdoviruses.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Especificidade de Hospedeiro , Solanum lycopersicum , Filogenia , Doenças das Plantas , Ecossistema , Sérvia
3.
Virus Res ; 344: 199362, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38508402

RESUMO

We report the characterization of a novel tri-segmented RNA virus infecting Mercurialis annua, a common crop weed and model species in plant science. The virus, named "Mercurialis latent virus" (MeLaV) was first identified in a mixed infection with the recently described Mercurialis orthotospovirus 1 (MerV1) on symptomatic plants grown in glasshouses in Lausanne (Switzerland). Both viruses were found to be transmitted by Thrips tabaci, which presumably help the inoculation of infected pollen in the case of MeLaV. Complete genome sequencing of the latter revealed a typical ilarviral architecture and close phylogenetic relationship with members of the Ilarvirus subgroup 1. Surprisingly, a short portion of MeLaV replicase was found to be identical to the partial sequence of grapevine angular mosaic virus (GAMV) reported in Greece in the early 1990s. However, we have compiled data that challenge the involvement of GAMV in angular mosaic of grapevine, and we propose alternative causal agents for this disorder. In parallel, three highly-conserved MeLaV isolates were identified in symptomatic leaf samples in The Netherlands, including a herbarium sample collected in 1991. The virus was also traced in diverse RNA sequencing datasets from 2013 to 2020, corresponding to transcriptomic analyses of M. annua and other plant species from five European countries, as well as metaviromics analyses of bees in Belgium. Additional hosts are thus expected for MeLaV, yet we argue that infected pollen grains have likely contaminated several sequencing datasets and may have caused the initial characterization of MeLaV as GAMV.


Assuntos
Genoma Viral , Ilarvirus , Filogenia , Doenças das Plantas , Pólen , Vitis , Vitis/virologia , Doenças das Plantas/virologia , Pólen/virologia , Ilarvirus/genética , Ilarvirus/isolamento & purificação , Ilarvirus/classificação , Animais , RNA Viral/genética , Sequenciamento Completo do Genoma , Tisanópteros/virologia
4.
Plants (Basel) ; 10(8)2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34451751

RESUMO

Several outbreaks of pospiviroids have been reported in pepper and tomato crops worldwide. Tracing back the origin of the infections has led to different sources. In some cases, the infections were considered to result from seed transmission. Other outbreaks were related to transmission from ornamental crops and weeds. Pospiviroids, in particular potato spindle tuber viroid, are regulated by many countries because they can be harmful to potatoes and tomatoes. Seed transmission has been considered an important pathway of introduction and spread. However, the importance of this pathway can be questioned. This paper presents data on seed transmission from large-scale grow-out trials of infested pepper and tomato seed lots produced under standard seed-industry conditions. In addition, it presents the results of a systematic review of published data on seed transmission and outbreaks in commercial pepper and tomato crops. Based on the results of the grow-out trials and review of the literature, it was concluded that the role of seed transmission in the spread of pospiviroids in practice is possibly overestimated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA