Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cancer ; 118(21): 5210-6, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-22544547

RESUMO

BACKGROUND: Current estimates of the contribution of large rearrangement (LR) mutations in the BRCA1 (breast cancer 1, early onset) and BRCA2 (breast cancer 2, early onset) genes responsible for hereditary breast and ovarian cancer are based on limited studies of relatively homogeneous patient populations. The prevalence of BRCA1/2 LRs was investigated in 48,456 patients with diverse clinical histories and ancestries, referred for clinical molecular testing for suspicion of hereditary breast and ovarian cancer. METHODS: Sanger sequencing analysis was performed for BRCA1/2 and LR testing for deletions and duplications using a quantitative multiplex polymerase chain reaction assay. Prevalence data were analyzed for patients from different risk and ethnic groups between July 2007 and April 2011. Patients were designated as "high-risk" if their clinical history predicted a high prior probability, wherein LR testing was performed automatically in conjunction with sequencing. "Elective" patients did not meet the high-risk criteria, but underwent LR testing as ordered by the referring health care provider. RESULTS: Overall BRCA1/2 mutation prevalence among high-risk patients was 23.8% versus 8.2% for the elective group. The mutation profile for high-risk patients was 90.1% sequencing mutations versus 9.9% LRs, and for elective patients, 94.1% sequencing versus 5.9% LRs. This difference may reflect the bias in high-risk patients to carry mutations in BRCA1, which has a higher penetrance and frequency of LRs compared with BRCA2. There were significant differences in the prevalence and types of LRs in patients of different ancestries. LR mutations were significantly more common in Latin American/Caribbean patients. CONCLUSIONS: Comprehensive LR testing in conjunction with full gene sequencing is an appropriate strategy for clinical BRCA1/2 analysis.


Assuntos
Neoplasias da Mama/genética , Genes BRCA1 , Genes BRCA2 , Neoplasias Ovarianas/genética , Translocação Genética , Neoplasias da Mama/etnologia , Feminino , Humanos , Mutação , Neoplasias Ovarianas/etnologia , Fatores de Risco , Análise de Sequência de DNA
2.
J Exp Clin Cancer Res ; 33: 74, 2014 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-25204323

RESUMO

BACKGROUND: Conventional Sanger sequencing reliably detects the majority of genetic mutations associated with hereditary cancers, such as single-base changes and small insertions or deletions. However, detection of genomic rearrangements, such as large deletions and duplications, requires special technologies. Microarray analysis has been successfully used to detect large rearrangements (LRs) in genetic disorders. METHODS: We designed and validated a high-density oligonucleotide microarray for the detection of gene-level genomic rearrangements associated with hereditary breast and ovarian cancer (HBOC), Lynch, and polyposis syndromes. The microarray consisted of probes corresponding to the exons and flanking introns of BRCA1 and BRCA2 (≈1,700) and Lynch syndrome/polyposis genes MLH1, MSH2, MSH6, APC, MUTYH, and EPCAM (≈2,200). We validated the microarray with 990 samples previously tested for LR status in BRCA1, BRCA2, MLH1, MSH2, MSH6, APC, MUTYH, or EPCAM. Microarray results were 100% concordant with previous results in the validation studies. Subsequently, clinical microarray analysis was performed on samples from patients with a high likelihood of HBOC mutations (13,124), Lynch syndrome mutations (18,498), and polyposis syndrome mutations (2,739) to determine the proportion of LRs. RESULTS: Our results demonstrate that LRs constitute a substantial proportion of genetic mutations found in patients referred for hereditary cancer genetic testing. CONCLUSION: The use of microarray comparative genomic hybridization (CGH) for the detection of LRs is well-suited as an adjunct technology for both single syndrome (by Sanger sequencing analysis) and extended gene panel testing by next generation sequencing analysis. Genetic testing strategies using microarray analysis will help identify additional patients carrying LRs, who are predisposed to various hereditary cancers.


Assuntos
Genômica , Síndromes Neoplásicas Hereditárias/genética , Análise de Sequência com Séries de Oligonucleotídeos , Translocação Genética , Éxons , Genômica/métodos , Humanos , Proteína 2 Homóloga a MutS/genética , Mutação , Síndromes Neoplásicas Hereditárias/diagnóstico , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA