Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Phys Rev Lett ; 130(23): 236402, 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37354399

RESUMO

Three-dimensional Dirac semimetals are an exotic state of matter that continue to attract increasing attention due to the unique properties of their low-energy excitations. Here, by performing angle-resolved photoemission spectroscopy, we investigate the electronic structure of Au_{2}Pb across a wide temperature range. Our experimental studies on the (111)-cleaved surface unambiguously demonstrate that Au_{2}Pb is a three-dimensional Dirac semimetal characterized by the presence of a bulk Dirac cone projected off-center of the bulk Brillouin zone (BZ), in agreement with our theoretical calculations. Unusually, we observe that the bulk Dirac cone is significantly shifted by more than 0.4 eV to higher binding energies with reducing temperature, eventually going through a Lifshitz transition. The pronounced downward shift is qualitatively reproduced by our calculations indicating that an enhanced orbital overlap upon compression of the lattice, which preserves C_{4} rotational symmetry, is the main driving mechanism for the Lifshitz transition. These findings not only broaden the range of currently known materials exhibiting three-dimensional Dirac phases, but also show a viable mechanism by which it could be possible to switch on and off the contribution of the degeneracy point to electron transport without external doping.


Assuntos
Chumbo , Espectroscopia Fotoeletrônica , Temperatura
2.
Phys Rev Lett ; 121(25): 256602, 2018 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-30608835

RESUMO

We report a study of quantum oscillations in the high-field magnetoresistance of the nodal-line semimetal HfSiS. In the presence of a magnetic field up to 31 T parallel to the c axis, we observe quantum oscillations originating both from orbits of individual electron and hole pockets, and from magnetic breakdown between these pockets. In particular, we reveal a breakdown orbit enclosing one electron and one hole pocket in the form of a "figure of eight," which is a manifestation of Klein tunneling in momentum space, although in a regime of partial transmission due to the finite separation between the pockets. The observed very strong dependence of the oscillation amplitude on the field angle and the cyclotron masses of the orbits are in agreement with the theoretical predictions for this novel tunneling phenomenon.

3.
Phys Rev Lett ; 119(18): 187401, 2017 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-29219545

RESUMO

ZrSiS exhibits a frequency-independent interband conductivity σ(ω)=const(ω)≡σ_{flat} in a broad range from 250 to 2500 cm^{-1} (30-300 meV). This makes ZrSiS similar to (quasi-)two-dimensional Dirac electron systems, such as graphite and graphene. We assign the flat optical conductivity to the transitions between quasi-two-dimensional Dirac bands near the Fermi level. In contrast to graphene, σ_{flat} is not universal but related to the length of the nodal line in the reciprocal space, k_{0}. Because of spin-orbit coupling, the discussed Dirac bands in ZrSiS possess a small gap Δ, for which we determine an upper bound max(Δ)=30 meV from our optical measurements. At low temperatures the momentum-relaxation rate collapses, and the characteristic length scale of momentum relaxation is of the order of microns below 50 K.

4.
Phys Rev Lett ; 114(3): 036401, 2015 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-25659009

RESUMO

Using inelastic neutron scattering, we map a 14 meV coherent resonant mode in the topological Kondo insulator SmB6 and describe its relation to the low energy insulating band structure. The resonant intensity is confined to the X and R high symmetry points, repeating outside the first Brillouin zone and dispersing less than 2 meV, with a 5d-like magnetic form factor. We present a slave-boson treatment of the Anderson Hamiltonian with a third neighbor dominated hybridized band structure. This approach produces a spin exciton below the charge gap with features that are consistent with the observed neutron scattering. We find that maxima in the wave vector dependence of the inelastic neutron scattering indicate band inversion.

5.
J Phys Condens Matter ; 30(48): 485403, 2018 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-30418951

RESUMO

We measured the optical reflectivity of the Dirac material Au2Pb in a broad frequency range (30-48 000 cm-1) for temperatures between 9 and 300 K. The optical conductivity, computed from the reflectivity, is dominated by free-carrier contributions from topologically trivial bulk bands at all temperatures. The temperature-independent total plasma frequency of these carriers is [Formula: see text] eV. Overall, optical response of Au2Pb is typically metallic with no signs of localization and bad-metal behavior.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA