Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 299(11): 105278, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37742917

RESUMO

Most immunoglobulin (Ig) domains bear only a single highly conserved canonical intradomain, inter-ß-sheet disulfide linkage formed between Cys23-Cys104, and incorporation of rare noncanonical disulfide linkages at other locations can enhance Ig domain stability. Here, we exhaustively surveyed the sequence tolerance of Ig variable (V) domain framework regions (FRs) to noncanonical disulfide linkages. Starting from a destabilized VH domain lacking a Cys23-Cys104 disulfide linkage, we generated and screened phage-displayed libraries of engineered VHs, bearing all possible pairwise combinations of Cys residues in neighboring ß-strands of the Ig fold FRs. This approach identified seven novel Cys pairs in VH FRs (Cys4-Cys25, Cys4-Cys118, Cys5-Cys120, Cys6-Cys119, Cys22-Cys88, Cys24-Cys86, and Cys45-Cys100; the international ImMunoGeneTics information system numbering), whose presence rescued domain folding and stability. Introduction of a subset of these noncanonical disulfide linkages (three intra-ß-sheet: Cys4-Cys25, Cys22-Cys88, and Cys24-Cys86, and one inter-ß-sheet: Cys6-Cys119) into a diverse panel of VH, VL, and VHH domains enhanced their thermostability and protease resistance without significantly impacting expression, solubility, or binding to cognate antigens. None of the noncanonical disulfide linkages identified were present in the natural human VH repertoire. These data reveal an unexpected permissiveness of Ig V domains to noncanonical disulfide linkages at diverse locations in FRs, absent in the human repertoire, whose presence is compatible with antigen recognition and improves domain stability. Our work represents the most complete assessment to date of the role of engineered noncanonical disulfide bonding within FRs in Ig V domain structure and function.


Assuntos
Região Variável de Imunoglobulina , Humanos , Sequência de Aminoácidos , Técnicas de Visualização da Superfície Celular , Região Variável de Imunoglobulina/química , Região Variável de Imunoglobulina/genética , Região Variável de Imunoglobulina/metabolismo , Domínios Proteicos/genética , Escherichia coli/genética , Dobramento de Proteína
2.
Biotechnol Bioeng ; 120(7): 1746-1761, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36987713

RESUMO

Protein expression from stably transfected Chinese hamster ovary (CHO) clones is an established but time-consuming method for manufacturing therapeutic recombinant proteins. The use of faster, alternative approaches, such as non-clonal stable pools, has been restricted due to lower productivity and longstanding regulatory guidelines. Recently, the performance of stable pools has improved dramatically, making them a viable option for quickly producing drug substance for GLP-toxicology and early-phase clinical trials in scenarios such as pandemics that demand rapid production timelines. Compared to stable CHO clones which can take several months to generate and characterize, stable pool development can be completed in only a few weeks. Here, we compared the productivity and product quality of trimeric SARS-CoV-2 spike protein ectodomains produced from stable CHO pools or clones. Using a set of biophysical and biochemical assays we show that product quality is very similar and that CHO pools demonstrate sufficient productivity to generate vaccine candidates for early clinical trials. Based on these data, we propose that regulatory guidelines should be updated to permit production of early clinical trial material from CHO pools to enable more rapid and cost-effective clinical evaluation of potentially life-saving vaccines.


Assuntos
COVID-19 , SARS-CoV-2 , Cricetinae , Animais , Humanos , Cricetulus , SARS-CoV-2/metabolismo , Células CHO , Anticorpos Monoclonais , Vacinas contra COVID-19/genética , COVID-19/prevenção & controle , Proteínas Recombinantes/metabolismo , Vacinas de Subunidades Antigênicas/genética
3.
Anal Bioanal Chem ; 414(12): 3561-3569, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35260938

RESUMO

Development of diagnostic testing capability has advanced with unprecedented pace in response to the COVID-19 pandemic. An undesirable effect of such speed is a lack of standardization, often leading to unreliable test results. To assist the research community surmount this challenge, the National Research Council Canada has prepared a SARS-CoV-2 spike protein reference material, SMT1-1, as a buffered solution. Value assignment was achieved by amino acid analysis (AAA) by double isotope dilution liquid chromatography-tandem mass spectrometry (LC-ID-MS/MS) following acid hydrolysis of the protein, in combination with ultraviolet-visible spectrophotometry (UV-Vis) based on tryptophan and tyrosine absorbance at 280 nm. Homogeneity of the material was established through spectrophotometric absorbance readings at 280 nm. Transportation and long-term storage stabilities were assessed by monitoring relative changes in oligomeric state by size-exclusion liquid chromatography (LC-SEC) with UV detection. The molar concentration of the spike protein in SMT1-1 was 5.68 ± 0.22 µmol L-1 (k = 2, 95% CI), with the native trimeric form accounting for ~ 94% of the relative abundance. Reference mass concentration and mass fraction values were calculated using the protein molecular weight and density of the SMT1-1 solution. The spike protein is highly glycosylated which leads to analyte ambiguity when reporting the more commonly used mass concentration. After glycoprotein molar mass determination by LC-SEC with multi-angle light scattering detection, we thus reported mass concentration values for both the protein-only portion and intact glycoprotein as 0.813 ± 0.030 and 1.050 ± 0.068 mg mL-1 (k = 2), respectively.


Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Glicoproteínas , Humanos , Pandemias , Padrões de Referência , SARS-CoV-2 , Espectrometria de Massas em Tandem/métodos
4.
Front Microbiol ; 14: 1110541, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36778856

RESUMO

Crystal structures of camelid heavy-chain antibody variable domains (VHHs) bound to fragments of the combined repetitive oligopeptides domain of Clostridiodes difficile toxin A (TcdA) reveal that the C-terminus of VHH A20 was located 30 Å away from the N-terminus of VHH A26. Based on this observation, we generated a biparatopic fusion protein with A20 at the N-terminus, followed by a (GS)6 linker and A26 at the C-terminus. This A20-A26 fusion protein shows an improvement in binding affinity and a dramatic increase in TcdA neutralization potency (>330-fold [IC 50]; ≥2,700-fold [IC 99]) when compared to the unfused A20 and A26 VHHs. A20-A26 also shows much higher binding affinity and neutralization potency when compared to a series of control antibody constructs that include fusions of two A20 VHHs, fusions of two A26 VHHs, a biparatopic fusion with A26 at the N-terminus and A20 at the C-terminus (A26-A20), and actoxumab. In particular, A20-A26 displays a 310-fold (IC 50) to 29,000-fold (IC 99) higher neutralization potency than A26-A20. Size-exclusion chromatography-multiangle light scattering (SEC-MALS) analyses further reveal that A20-A26 binds to TcdA with 1:1 stoichiometry and simultaneous engagement of both A20 and A26 epitopes as expected based on the biparatopic design inspired by the crystal structures of TcdA bound to A20 and A26. In contrast, the control constructs show varied and heterogeneous binding modes. These results highlight the importance of molecular geometric constraints in generating highly potent antibody-based reagents capable of exploiting the simultaneous binding of more than one paratope to an antigen.

6.
Sci Rep ; 13(1): 16498, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37779126

RESUMO

SARS-CoV-2 subunit vaccines continue to be the focus of intense clinical development worldwide. Protein antigens in these vaccines most commonly consist of the spike ectodomain fused to a heterologous trimerization sequence, designed to mimic the compact, prefusion conformation of the spike on the virus surface. Since 2020, we have produced dozens of such constructs in CHO cells, consisting of spike variants with different mutations fused to different trimerization sequences. This set of constructs displayed notable conformational heterogeneity, with two distinct trimer species consistently detected by analytical size exclusion chromatography. A recent report showed that spike ectodomain fusion constructs can adopt an alternative trimer conformation consisting of loosely associated ectodomain protomers. Here, we applied multiple biophysical and immunological techniques to demonstrate that this alternative conformation is formed to a significant extent by several SARS-CoV-2 variant spike proteins. We have also examined the influence of temperature and pH, which can induce inter-conversion of the two forms. The substantial structural differences between these trimer types may impact their performance as vaccine antigens.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Cricetinae , Humanos , Vacinas contra COVID-19/genética , Temperatura , Cricetulus , Antígenos , Mutação , Concentração de Íons de Hidrogênio , Anticorpos Neutralizantes
7.
Nat Commun ; 14(1): 1394, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36914633

RESUMO

Human epidermal growth factor receptor 2 (HER2) is a receptor tyrosine kinase that plays an oncogenic role in breast, gastric and other solid tumors. However, anti-HER2 therapies are only currently approved for the treatment of breast and gastric/gastric esophageal junction cancers and treatment resistance remains a problem. Here, we engineer an anti-HER2 IgG1 bispecific, biparatopic antibody (Ab), zanidatamab, with unique and enhanced functionalities compared to both trastuzumab and the combination of trastuzumab plus pertuzumab (tras + pert). Zanidatamab binds adjacent HER2 molecules in trans and initiates distinct HER2 reorganization, as shown by polarized cell surface HER2 caps and large HER2 clusters, not observed with trastuzumab or tras + pert. Moreover, zanidatamab, but not trastuzumab nor tras + pert, elicit potent complement-dependent cytotoxicity (CDC) against high HER2-expressing tumor cells in vitro. Zanidatamab also mediates HER2 internalization and downregulation, inhibition of both cell signaling and tumor growth, antibody-dependent cellular cytotoxicity (ADCC) and phagocytosis (ADCP), and also shows superior in vivo antitumor activity compared to tras + pert in a HER2-expressing xenograft model. Collectively, we show that zanidatamab has multiple and distinct mechanisms of action derived from the structural effects of biparatopic HER2 engagement.


Assuntos
Anticorpos Biespecíficos , Antineoplásicos , Neoplasias da Mama , Humanos , Feminino , Ensaios Antitumorais Modelo de Xenoenxerto , Linhagem Celular Tumoral , Trastuzumab/farmacologia , Trastuzumab/uso terapêutico , Receptor ErbB-2/metabolismo , Citotoxicidade Celular Dependente de Anticorpos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico
8.
Chembiochem ; 12(5): 768-76, 2011 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-21351219

RESUMO

Acyl transfer is a key reaction in biosynthesis, including synthesis of antibiotics and polyesters. Although researchers have long recognized the similar protein fold and catalytic machinery in acyltransferases and hydrolases, the molecular basis for the different reactivity has been a long-standing mystery. By comparison of X-ray structures, we identified a different oxyanion-loop orientation in the active site. In esterases/lipases a carbonyl oxygen points toward the active site, whereas in acyltransferases a NH of the main-chain amide points toward the active site. Amino acid sequence comparisons alone cannot identify such a difference in the main-chain orientation. To identify how this difference might change the reaction mechanism, we solved the X-ray crystal structure of Pseudomonas fluorescens esterase containing a sulfonate transition-state analogue bound to the active-site serine. This structure mimics the transition state for the attack of water on the acyl-enzyme and shows a bridging water molecule between the carbonyl oxygen mentioned above and the sulfonyl oxygen that mimics the attacking water. A possible mechanistic role for this bridging water molecule is to position and activate the attacking water molecule in hydrolases, but to deactivate the attacking water molecule in acyl transferases.


Assuntos
Aciltransferases/química , Haemophilus influenzae/enzimologia , Hidrolases/química , Pseudomonas fluorescens/enzimologia , Domínio Catalítico , Cristalografia por Raios X , Esterases/química , Modelos Moleculares , Conformação Proteica
9.
Proc Natl Acad Sci U S A ; 105(18): 6566-71, 2008 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-18445651

RESUMO

Gadd45 proteins are recognized as tumor and autoimmune suppressors whose expression can be induced by genotoxic stresses. These proteins are involved in cell cycle control, growth arrest, and apoptosis through interactions with a wide variety of binding partners. We report here the crystal structure of Gadd45gamma, which reveals a fold comprising an alphabetaalpha sandwich with a central five-stranded mixed beta-sheet with alpha-helices packed on either side. Based on crystallographic symmetry we identified the dimer interface of Gadd45gamma dimers by generating point mutants that compromised dimerization while leaving the tertiary structure of the monomer intact. The dimer interface comprises a four-helix bundle involving residues that are the most highly conserved among Gadd45 isoforms. Cell-based assays using these point mutants demonstrate that dimerization is essential for growth inhibition. This structural information provides a new context for evaluation of the plethora of protein-protein interactions that govern the many functions of the Gadd45 family of proteins.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/química , Sequência de Aminoácidos , Animais , Linhagem Celular , Proliferação de Células , Sequência Conservada , Cristalografia por Raios X , Dimerização , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Dados de Sequência Molecular , Peso Molecular , Proteínas Mutantes/química , Mutação Puntual/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Ligação Proteica , Isoformas de Proteínas/química , Estrutura Secundária de Proteína , Soluções , Proteínas GADD45
10.
Structure ; 17(5): 651-9, 2009 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-19446521

RESUMO

Protein disulfide isomerases are a family of proteins that catalyze the oxidation and isomerization of disulfide bonds in newly synthesized proteins in the endoplasmic reticulum. The family includes general enzymes such as PDI that recognize unfolded proteins, and others that are selective for specific classes of proteins. Here, we report the X-ray crystal structure of central non-catalytic domains of a specific isomerase, ERp72 (also called CaBP2 and protein disulfide-isomerase A4) from Rattus norvegicus. The structure reveals strong similarity to ERp57, a PDI-family member that interacts with the lectin-like chaperones calnexin and calreticulin but, unexpectedly, ERp72 does not interact with calnexin as shown by isothermal titration calorimetry and nuclear magnetic resonance (NMR) spectroscopy. Small-angle X-ray scattering (SAXS) of ERp72 was used to develop models of the full-length protein using both rigid body refinement and ab initio simulated annealing of dummy atoms. The two methods show excellent agreement and define the relative positions of the five thioredoxin-like domains of ERp72 and potential substrate or chaperone binding sites.


Assuntos
Glicoproteínas de Membrana/química , Isomerases de Dissulfetos de Proteínas/química , Sequência de Aminoácidos , Animais , Sítios de Ligação , Calnexina , Catálise , Glicoproteínas de Membrana/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Isomerases de Dissulfetos de Proteínas/metabolismo , Dobramento de Proteína , Estrutura Terciária de Proteína , Ratos , Difração de Raios X
11.
Mol Ther Methods Clin Dev ; 21: 341-356, 2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-33898632

RESUMO

Removal of empty capsids from adeno-associated virus (AAV) manufacturing lots remains a critical step in the downstream processing of AAV clinical-grade batches. Because of similar physico-chemical characteristics, the AAV capsid populations totally lacking or containing partial viral DNA are difficult to separate from the desired vector capsid populations. Based on minute differences in density, ultracentrifugation remains the most effective separation method and has been extensively used at small scale but has limitations associated with availabilities and operational complexities in large-scale processing. In this paper, we report a scalable, robust, and versatile anion-exchange chromatography (AEX) method for removing empty capsids and subsequent enrichment of vectors of AAV serotypes 5, 6, 8, and 9. On average, AEX resulted in about 9-fold enrichment of AAV5 in a single step containing 80% ± 5% genome-containing vector capsids, as verified and quantified by analytical ultracentrifugation. The optimized process was further validated using AAV6, AAV8, and AAV9, resulting in over 90% vector enrichment. The AEX process showed comparable results not only for vectors with different transgenes of different sizes but also for AEX runs under different geometries of chromatographic media. The herein-reported sulfate-salt-based AEX process can be adapted to different AAV serotypes by appropriately adjusting elution conditions to achieve enriched vector preparations.

12.
J Biotechnol ; 326: 21-27, 2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33301853

RESUMO

Recombinant forms of the spike protein of SARS-CoV-2 and related viruses have proven difficult to produce with good yields in mammalian cells. Given the panoply of potential COVID-19 diagnostic tools and therapeutic candidates that require purified spike protein and its importance for ongoing SARS-CoV-2 research, we have explored new approaches for spike production and purification. Three transient gene expression methods based on PEI-mediated transfection of CHO or HEK293 cells in suspension culture in chemically-defined media were compared for rapid production of full-length SARS-CoV-2 spike ectodomain. A high-cell-density protocol using DXB11-derived CHOBRI/55E1 cells gave substantially better yields than the other methods. Different forms of the spike ectodomain were expressed, including the wild-type SARS-CoV-2 sequence and a mutated form (to favor expression of the full-length spike ectodomain stabilized in pre-fusion conformation), with and without fusion to putative trimerization domains. An efficient two-step affinity purification method was also developed. Ultimately, we have been able to produce highly homogenous preparations of full-length spike, both monomeric and trimeric, with yields of 100-150 mg/L in the harvested medium. The speed and productivity of this method support further development of CHO-based approaches for recombinant spike protein manufacturing.


Assuntos
Domínios Proteicos , Proteínas Recombinantes , Glicoproteína da Espícula de Coronavírus/genética , Animais , Células CHO , Cricetulus , Expressão Gênica , Células HEK293 , Humanos , SARS-CoV-2 , Transfecção
13.
Biochemistry ; 49(9): 1931-42, 2010 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-20112920

RESUMO

Many serine hydrolases catalyze perhydrolysis, the reversible formation of peracids from carboxylic acids and hydrogen peroxide. Recently, we showed that a single amino acid substitution in the alcohol binding pocket, L29P, in Pseudomonas fluorescens (SIK WI) aryl esterase (PFE) increased the specificity constant of PFE for peracetic acid formation >100-fold [Bernhardt et al. (2005) Angew. Chem., Int. Ed. 44, 2742]. In this paper, we extend this work to address the three following questions. First, what is the molecular basis of the increase in perhydrolysis activity? We previously proposed that the L29P substitution creates a hydrogen bond between the enzyme and hydrogen peroxide in the transition state. Here we report two X-ray structures of L29P PFE that support this proposal. Both structures show a main chain carbonyl oxygen closer to the active site serine as expected. One structure further shows acetate in the active site in an orientation consistent with reaction by an acyl-enzyme mechanism. We also detected an acyl-enzyme intermediate in the hydrolysis of epsilon-caprolactone by mass spectrometry. Second, can we further increase perhydrolysis activity? We discovered that the reverse reaction, hydrolysis of peracetic acid to acetic acid and hydrogen peroxide, occurs at nearly the diffusion limited rate. Since the reverse reaction cannot increase further, neither can the forward reaction. Consistent with this prediction, two variants with additional amino acid substitutions showed 2-fold higher k(cat), but K(m) also increased so the specificity constant, k(cat)/K(m), remained similar. Third, how does the L29P substitution change the esterase activity? Ester hydrolysis decreased for most esters (75-fold for ethyl acetate) but not for methyl esters. In contrast, L29P PFE catalyzed hydrolysis of epsilon-caprolactone five times more efficiently than wild-type PFE. Molecular modeling suggests that moving the carbonyl group closer to the active site blocks access for larger alcohol moieties but binds epsilon-caprolactone more tightly. These results are consistent with the natural function of perhydrolases being either hydrolysis of peroxycarboxylic acids or hydrolysis of lactones.


Assuntos
Proteínas de Bactérias/química , Hidrolases de Éster Carboxílico/química , Peróxido de Hidrogênio/química , Pseudomonas fluorescens/enzimologia , Ácido Acético/química , Substituição de Aminoácidos/genética , Proteínas de Bactérias/genética , Biocatálise , Caproatos/química , Hidrolases de Éster Carboxílico/genética , Domínio Catalítico/genética , Cristalização , Cristalografia por Raios X , Difusão , Ésteres/química , Hidrólise , Lactonas/química , Leucina/genética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Prolina/genética , Pseudomonas fluorescens/genética
14.
MAbs ; 12(1): 1682866, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31777319

RESUMO

Recent development of monoclonal antibodies as mainstream anticancer agents demands further optimization of their safety for use in humans. Potent targeting and/or effector activities on normal tissues is an obvious toxicity concern. Optimization of specific tumor targeting could be achieved by taking advantage of the extracellular acidity of solid tumors relative to normal tissues. Here, we applied a structure-based computational approach to engineer anti-human epidermal growth factor receptor 2 (Her2) antibodies with selective binding in the acidic tumor microenvironment. We used an affinity maturation platform in which dual-pH histidine-scanning mutagenesis was implemented for pH selectivity optimization. Testing of a small set of designs for binding to the recombinant Her2 ectodomain led to the identification of antigen-binding fragment (Fab) variants with the desired pH-dependent binding behavior. Binding selectivity toward acidic pH was improved by as much as 25-fold relative to the parental bH1-Fab. In vitro experiments on cells expressing intact Her2 confirmed that designed variants formatted as IgG1/k full-size antibodies have high affinity and inhibit the growth of tumor spheroids at a level comparable to that of the benchmark anti-Her2 antibody trastuzumab (Herceptin®) at acidic pH, whereas these effects were significantly reduced at physiological pH. In contrast, both Herceptin and the parental bH1 antibody exhibited strong cell binding and growth inhibition irrespective of pH. This work demonstrates the feasibility of computational optimization of antibodies for selective targeting of the acidic environment such as that found in many solid tumors.


Assuntos
Antineoplásicos Imunológicos/química , Imunoterapia/métodos , Neoplasias/terapia , Afinidade de Anticorpos/genética , Antineoplásicos Imunológicos/uso terapêutico , Linhagem Celular Tumoral , Histidina/genética , Humanos , Concentração de Íons de Hidrogênio , Mutagênese Sítio-Dirigida , Neoplasias/imunologia , Ligação Proteica , Conformação Proteica , Engenharia de Proteínas , Receptor ErbB-2/imunologia , Trastuzumab/uso terapêutico , Microambiente Tumoral
15.
Trends Biochem Sci ; 28(1): 49-57, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12517452

RESUMO

Glycan moieties are essential for folding, sorting and targeting of glycoproteins through the secretory pathway to various cellular compartments. The molecular mechanisms that underlie these processes, however, are only now coming to light. Recent crystallographic and NMR studies of proteins located in the endoplasmic reticulum (ER), Golgi complex and ER-Golgi intermediate compartment have illuminated their roles in glycoprotein folding and secretion. Calnexin and calreticulin, both ER-resident proteins, have lectin domains that are crucial for their function as chaperones. The crystal structure of the carbohydrate-recognition domain of ER-Golgi intermediate compartment (ERGIC)-53 complements the biochemical and functional characterization of the protein, confirming that a lectin domain is essential for the role of this protein in sorting and transfer of glycoproteins from the ER to the Golgi complex. The lectin domains of calnexin and ERGIC-53 are structurally similar, although there is little primary sequence similarity. By contrast, sequence similarity between ERGIC-53 and vesicular integral membrane protein (VIP36), a Golgi-resident protein, leaves little doubt that a similar lectin domain is central to the transport and/or sorting functions of VIP36. The theme emerging from these studies is that carbohydrate recognition and modification are central to mediation of glycoprotein folding and secretion.


Assuntos
Lectinas/fisiologia , Dobramento de Proteína , Sequência de Aminoácidos , Animais , Calnexina/química , Calnexina/fisiologia , Calreticulina/química , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Dados de Sequência Molecular , Conformação Proteica , Transporte Proteico , Homologia de Sequência de Aminoácidos
16.
Mol Ther Methods Clin Dev ; 13: 279-289, 2019 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-30886878

RESUMO

Despite numerous advancements in production protocols, manufacturing AAV to meet exceptionally high demand (1016-1017 viral genomes [VGs]) in late clinical stages and for eventual systemic delivery poses significant challenges. Here, we report an efficient, simple, scalable, robust AAV5 production process utilizing the most recent modification of the OneBac platform. An increase in volumetric yield of genomic particles by ∼6-fold and functional particles by ∼20-fold was achieved by operating a high-cell-density process in shake flasks and bioreactors that involves an Sf9-based rep/cap stable cell line grown at a density of about 10 million cells/mL infected with a single baculovirus. The overall volumetric yields of genomic (VG) and bioactive particles (enhanced transducing units [ETUs]) in representative fedbatch bioreactor runs ranged from 2.5 to 3.5 × 1014 VG/L and from 1 to 2 × 1011 ETU/L. Analytical ultracentrifugation analyses of affinity-purified AAV vector samples from side-by-side batch and fedbatch production runs showed vector preparations with a full and empty particle distribution of 20%-30% genomic and 70%-80% empty particles. Moreover, the stoichiometric analysis of capsid proteins from fedbatch production in shake flask and bioreactor run samples demonstrated the incorporation of higher VP1 subunits, resulting in better functionality.

17.
MAbs ; 11(7): 1300-1318, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31318308

RESUMO

Solution stability is an important factor in the optimization of engineered biotherapeutic candidates such as monoclonal antibodies because of its possible effects on manufacturability, pharmacology, efficacy and safety. A detailed atomic understanding of the mechanisms governing self-association of natively folded protein monomers is required to devise predictive tools to guide screening and re-engineering along the drug development pipeline. We investigated pairs of affinity-matured full-size antibodies and observed drastically different propensities to aggregate from variants differing by a single amino-acid. Biophysical testing showed that antigen-binding fragments (Fabs) from the aggregating antibodies also reversibly associated with equilibrium dissociation constants in the low-micromolar range. Crystal structures (PDB accession codes 6MXR, 6MXS, 6MY4, 6MY5) and bottom-up hydrogen-exchange mass spectrometry revealed that Fab self-association occurs in a symmetric mode that involves the antigen complementarity-determining regions. Subtle local conformational changes incurred upon point mutation of monomeric variants foster formation of complementary polar interactions and hydrophobic contacts to generate a dimeric Fab interface. Testing of popular in silico tools generally indicated low reliabilities for predicting the aggregation propensities observed. A structure-aggregation data set is provided here in order to stimulate further improvements of in silico tools for prediction of native aggregation. Incorporation of intermolecular docking, conformational flexibility, and short-range packing interactions may all be necessary features of the ideal algorithm.


Assuntos
Anticorpos Monoclonais/química , Regiões Determinantes de Complementaridade/química , Fragmentos Fab das Imunoglobulinas/química , Anticorpos Monoclonais/genética , Bioengenharia , Regiões Determinantes de Complementaridade/genética , Dimerização , Humanos , Fragmentos Fab das Imunoglobulinas/genética , Espectrometria de Massas , Mutação/genética , Agregados Proteicos , Conformação Proteica , Dobramento de Proteína , Estabilidade Proteica , Estereoisomerismo , Relação Estrutura-Atividade
18.
Structure ; 14(8): 1331-9, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16905107

RESUMO

The synthesis of proteins in the endoplasmic reticulum (ER) is limited by the rate of correct disulfide bond formation. This process is carried out by protein disulfide isomerases, a family of ER proteins which includes general enzymes such as PDI that recognize unfolded proteins and others that are selective for specific proteins or classes. Using small-angle X-ray scattering and X-ray crystallography, we report the structure of a selective isomerase, ERp57, and its interactions with the lectin chaperone calnexin. Using isothermal titration calorimetry and NMR spectroscopy, we show that the b' domain of ERp57 binds calnexin with micromolar affinity through a conserved patch of basic residues. Disruption of this binding site by mutagenesis abrogates folding of RNase B in an in vitro assay. The relative positions of the ERp57 catalytic sites and calnexin binding site suggest that activation by calnexin is due to substrate recruitment rather than a direct stimulation of ERp57 oxidoreductase activity.


Assuntos
Retículo Endoplasmático/química , Proteínas de Choque Térmico/química , Modelos Moleculares , Ligação Proteica , Isomerases de Dissulfetos de Proteínas/química , Estrutura Terciária de Proteína , Sequência de Aminoácidos , Calnexina/metabolismo , Calorimetria , Cristalografia por Raios X , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Dados de Sequência Molecular , Mutagênese , Ressonância Magnética Nuclear Biomolecular , Isomerases de Dissulfetos de Proteínas/genética , Isomerases de Dissulfetos de Proteínas/metabolismo
19.
J Mol Biol ; 359(5): 1249-60, 2006 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-16678853

RESUMO

Polyphosphate (polyP) is a linear polymer consisting of tens to hundreds of phosphate molecules joined together by high-energy anhydride bonds. These polymers are found in virtually all prokaryotic and eukaryotic cells and perform many functions; prominent among them are the responses to many stresses. Polyphosphate is synthesized by polyP kinase (PPK), using the terminal phosphate of ATP as the substrate, and degraded to inorganic phosphate by both endo- and exopolyphosphatases. Here we report the crystal structure and analysis of the polyphosphate phosphatase PPX from Escherichia coli O157:H7 refined at 2.2 Angstroms resolution. PPX is made of four domains. Domains I and II display structural similarity with one another and share the ribonuclease-H-like fold. Domain III bears structural similarity to the N-terminal, HD domain of SpoT. Domain IV, the smallest domain, has structural counterparts in cold-shock associated RNA-binding proteins but is of unknown function in PPX. The putative PPX active site is located at the interface between domains I and II. In the crystal structure of PPX these two domains are close together and represent the "closed" state. Comparison with the crystal structure of PPX/GPPA from Aquifex aeolicus reveals close structural similarity between domains I and II of the two enzymes, with the PPX/GPPA representing an "open" state. A striking feature of the dimer is a deep S-shaped canyon extending along the dimer interface and lined with positively charged residues. The active site region opens to this canyon. We postulate that this is a likely site of polyP binding.


Assuntos
Hidrolases Anidrido Ácido/química , Hidrolases Anidrido Ácido/metabolismo , Escherichia coli O157/enzimologia , Polifosfatos/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Dimerização , Metais/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Alinhamento de Sequência
20.
Antibodies (Basel) ; 6(2)2017 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-31548523

RESUMO

Asymmetric bispecific antibodies are a rapidly expanding therapeutic antibody class, designed to recognize two different target epitopes concurrently to achieve novel functions not available with normal antibodies. Many therapeutic designs require antibodies with reduced or silenced effector function. Although many solutions have been described in the literature to knockout effector function, to date all of them have involved the use of a specific antibody subtype (e.g., IgG2 or IgG4), or symmetric mutations in the lower hinge or CH2 domain of traditional homodimeric monospecific antibodies. In the context of a heterodimeric Fc, we describe novel asymmetric Fc mutations with reduced or silenced effector function in this article. These heteromultimeric designs contain asymmetric charged mutations in the lower hinge and the CH2 domain of the Fc. Surface plasmon resonance showed that the designed mutations display much reduced binding to all of the Fc gamma receptors and C1q. Ex vivo ADCC and CDC assays showed a consistent reduction in activity. Differential scanning calorimetry showed increased thermal stability for some of the designs. Finally, the asymmetric nature of the introduced charged mutations allowed for separation of homodimeric impurities by ion exchange chromatography, providing, as an added benefit, a purification strategy for the production of bispecific antibodies with reduced or silenced effector function.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA