RESUMO
Ultrafast laser pulse beams are four-dimensional, space-time phenomena that can exhibit complicated, coupled spatial and temporal profiles. Tailoring the spatiotemporal profile of an ultrafast pulse beam is necessary to optimize the focused intensity and to engineer exotic spatiotemporally shaped pulse beams. Here we demonstrate a single-pulse, reference-free spatiotemporal characterization technique based on two colocated synchronized measurements: (1) broadband single-shot ptychography and (2) single-shot frequency resolved optical gating. We apply the technique to measure the nonlinear propagation of an ultrafast pulse beam through a fused silica window. Our spatiotemporal characterization method represents a major contribution to the growing field of spatiotemporally engineered ultrafast laser pulse beams.