Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
2.
J Hematol Oncol ; 17(1): 3, 2024 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-38191467

RESUMO

Herbicide and pesticide exposure [e.g., agent orange (AO)] is associated with an increased risk of multiple myeloma (MM) due to the contaminant, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). However, it is unclear whether TCDD/AO exposure (AO exposure hereafter) increases the risk of progression of monoclonal gammopathy of undetermined significance (MGUS) to MM. We sought to evaluate the association in a nationwide study of US Veterans. A natural language processing algorithm was used to confirm MGUS and progression to MM. We included Veterans who were diagnosed with MGUS from 10/1/1999 to 12/31/2021 and served during the Vietnam War Era from 1/9/1962 to 5/7/1975. AO exposure was stratified according to three TCDD exposure levels: high (1/9/1962-11/30/1965), medium (12/1/1965-12/31/1970), or low (1/1/1971-5/7/1975). The association between AO exposure and progression was analyzed using multivariable Fine-Gray subdistribution hazard model with death as a competing event. The analytic cohort included 10,847 Veterans with MGUS, of whom 26.3% had AO exposure and 7.4% progressed to MM over a median follow-up of 5.2 years. In multivariable analysis, high exposure was associated with an increased progression rate (multivariable-adjusted hazard ratio 1.48; 95% confidence interval 1.02-2.16), compared to Veterans with no exposure. This information is critical to inform progression risk in patients diagnosed with MGUS and prior AO exposure. It is also applicable to MGUS patients with occupational TCDD exposure from herbicides and pesticides.


Assuntos
Herbicidas , Gamopatia Monoclonal de Significância Indeterminada , Mieloma Múltiplo , Dibenzodioxinas Policloradas , Veteranos , Humanos , Mieloma Múltiplo/induzido quimicamente , Mieloma Múltiplo/epidemiologia , Gamopatia Monoclonal de Significância Indeterminada/induzido quimicamente , Gamopatia Monoclonal de Significância Indeterminada/epidemiologia , Agente Laranja , Vietnã , Herbicidas/efeitos adversos , Dibenzodioxinas Policloradas/toxicidade
3.
Cancers (Basel) ; 16(15)2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39123433

RESUMO

Aberrant metabolism is a hallmark of malignancies including gliomas. Intracranial microdialysis enables the longitudinal collection of extracellular metabolites within CNS tissues including gliomas and can be leveraged to evaluate changes in the CNS microenvironment over a period of days. However, delayed metabolic impacts of CNS injury from catheter placement could represent an important covariate for interpreting the pharmacodynamic impacts of candidate therapies. Intracranial microdialysis was performed in patient-derived glioma xenografts of glioma before and 72 h after systemic treatment with either temozolomide (TMZ) or a vehicle. Microdialysate from GBM164, an IDH-mutant glioma patient-derived xenograft, revealed a distinct metabolic signature relative to the brain that recapitulated the metabolic features observed in human glioma microdialysate. Unexpectedly, catheter insertion into the brains of non-tumor-bearing animals triggered metabolic changes that were significantly enriched for the extracellular metabolome of glioma itself. TMZ administration attenuated this resemblance. The human glioma microdialysate was significantly enriched for both the PDX versus brain signature in mice and the induced metabolome of catheter placement within the murine control brain. These data illustrate the feasibility of microdialysis to identify and monitor the extracellular metabolome of diseased versus relatively normal brains while highlighting the similarity between the extracellular metabolome of human gliomas and that of CNS injury.

4.
bioRxiv ; 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38979159

RESUMO

Multiple Myeloma (MM) is a highly prevalent and incurable form of cancer that arises from malignant plasma cells, with over 35,000 new cases diagnosed annually in the United States. While there are a growing number of approved therapies, MM remains incurable and nearly all patients will relapse and exhaust all available treatment options. Mechanisms for disease progression are unclear and in particular, little is known regarding the role of long non-coding RNAs (lncRNA) in mediating disease progression and response to treatment. In this study, we used transcriptome sequencing to compare newly diagnosed MM patients who had short progression-free survival (PFS) to standard first-line treatment (PFS < 24 months) to patients who had prolonged PFS (PFS > 24 months). We identified 157 differentially upregulated lncRNAs with short PFS and focused our efforts on characterizing the most upregulated lncRNA, LINC01432. We investigated LINC01432 overexpression and CRISPR/Cas9 knockdown in MM cell lines to show that LINC01432 overexpression significantly increases cell viability and reduces apoptosis, while knockdown significantly reduces viability and increases apoptosis, supporting the clinical relevance of this lncRNA. Next, we used individual-nucleotide resolution cross-linking immunoprecipitation with RT-qPCR to show that LINC01432 directly interacts with the RNA binding protein, CELF2. Lastly, we showed that LINC01432-targeted locked nucleic acid antisense oligonucleotides reduce viability and increases apoptosis. In summary, this fundamental study identified lncRNAs associated with short PFS to standard NDMM treatment and further characterized LINC01432, which inhibits apoptosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA