Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Eur Respir J ; 60(3)2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35169028

RESUMO

BACKGROUND: While assumed to protect against coronavirus transmission, face masks may have effects on respiratory-haemodynamic parameters. Within this pilot study, we investigated immediate and progressive effects of FFP2 and surgical masks on exhaled breath constituents and physiological attributes in 30 adults at rest. METHODS: We continuously monitored exhaled breath profiles within mask space in older (age 60-80 years) and young to middle-aged (age 20-59 years) adults over the period of 15 and 30 min by high-resolution real-time mass-spectrometry. Peripheral oxygen saturation (S pO2 ) and respiratory and haemodynamic parameters were measured (noninvasively) simultaneously. RESULTS: Profound, consistent and significant (p≤0.001) changes in S pO2 (≥60_FFP2-15 min: 5.8±1.3%↓, ≥60_surgical-15 min: 3.6±0.9%↓, <60_FFP2-30 min: 1.9±1.0%↓, <60_surgical-30 min: 0.9±0.6%↓) and end-tidal carbon dioxide tension (P ETCO2 ) (≥60_FFP2-15 min: 19.1±8.0%↑, ≥60_surgical-15 min: 11.6±7.6%↑, <60_FFP2- 30 min: 12.1±4.5%↑, <60_surgical- 30 min: 9.3±4.1%↑) indicate ascending deoxygenation and hypercarbia. Secondary changes (p≤0.005) to haemodynamic parameters (e.g. mean arterial pressure (MAP) ≥60_FFP2-15 min: 9.8±10.4%↑) were found. Exhalation of bloodborne volatile metabolites, e.g. aldehydes, hemiterpene, organosulfur, short-chain fatty acids, alcohols, ketone, aromatics, nitrile and monoterpene mirrored behaviour of cardiac output, MAP, S pO2 , respiratory rate and P ETCO2 . Exhaled humidity (e.g. ≥60_FFP2-15 min: 7.1±5.8%↑) and exhaled oxygen (e.g. ≥60_FFP2-15 min: 6.1±10.0%↓) changed significantly (p≤0.005) over time. CONCLUSIONS: Breathomics allows unique physiometabolic insights into immediate and transient effects of face mask wearing. Physiological parameters and breath profiles of endogenous and/or exogenous volatile metabolites indicated putative cross-talk between transient hypoxaemia, oxidative stress, hypercarbia, vasoconstriction, altered systemic microbial activity, energy homeostasis, compartmental storage and washout. FFP2 masks had a more pronounced effect than surgical masks. Older adults were more vulnerable to FFP2 mask-induced hypercarbia, arterial oxygen decline, blood pressure fluctuations and concomitant physiological and metabolic effects.


Assuntos
COVID-19 , Expiração , Adulto , Idoso , Idoso de 80 Anos ou mais , Álcoois , Aldeídos , Dióxido de Carbono/metabolismo , Hemiterpenos , Hemodinâmica , Humanos , Cetonas , Máscaras , Pessoa de Meia-Idade , Monoterpenos , Nitrilas , Oxigênio , Projetos Piloto , Adulto Jovem
2.
Molecules ; 26(10)2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-34064882

RESUMO

Paratuberculosis is an important disease of ruminants caused by Mycobacterium avium ssp. paratuberculosis (MAP). Early detection is crucial for successful infection control, but available diagnostic tests are still dissatisfying. Methods allowing a rapid, economic, and reliable identification of animals or herds affected by MAP are urgently required. This explorative study evaluated the potential of volatile organic compounds (VOCs) to discriminate between cattle with and without MAP infections. Headspaces above fecal samples and alveolar fractions of exhaled breath of 77 cows from eight farms with defined MAP status were analyzed in addition to stable air samples. VOCs were identified by GC-MS and quantified against reference substances. To discriminate MAP-positive from MAP-negative samples, VOC feature selection and random forest classification were performed. Classification models, generated for each biological specimen, were evaluated using repeated cross-validation. The robustness of the results was tested by predicting samples of two different sampling days. For MAP classification, the different biological matrices emitted diagnostically relevant VOCs of a unique but partly overlapping pattern (fecal headspace: 19, alveolar gas: 11, stable air: 4-5). Chemically, relevant compounds belonged to hydrocarbons, ketones, alcohols, furans, and aldehydes. Comparing the different biological specimens, VOC analysis in fecal headspace proved to be most reproducible, discriminatory, and highly predictive.


Assuntos
Ar , Fezes/química , Gases/análise , Odorantes/análise , Paratuberculose/diagnóstico , Alvéolos Pulmonares/metabolismo , Animais , Bovinos , Mycobacterium avium subsp. paratuberculosis , Paratuberculose/microbiologia , Curva ROC , Reprodutibilidade dos Testes , Compostos Orgânicos Voláteis/análise
3.
Anal Bioanal Chem ; 412(26): 7131-7140, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32794005

RESUMO

Proton transfer reaction time-of-flight mass spectrometry (PTR-ToF-MS) is a powerful tool for real-time monitoring of trace concentrations of volatile organic compounds (VOCs). The sensitivity of PTR-ToF-MS also depends on the ability to effectively focus and transmit ions from the relatively high-pressure drift tube (DT) to the low-pressure mass analyzer. In the present study, a modular ion-funnel (IF) is placed adjacent to the DT of a PTR-ToF-MS instrument to improve the ion-focusing. IF consists of a series of electrodes with gradually decreasing orifice diameters. Radio frequency (RF) voltage and direct current (DC) electric field are then applied to the electrodes to get the ions focused. We investigated the effect of the RF voltage and DC field on the sensitivity of a pattern of VOCs including hydrocarbons, alcohols, aldehydes, ketones, and aromatic compounds. In a proof-of-concept study, the instrument operating both as normal DT (DC-mode) and at optimal IF conditions (RF-mode) was applied for the breath analysis of 21 healthy human subjects. For the range of investigated VOCs, an improvement of one order of magnitude in sensitivity was observed in RF-mode compared with DC-mode. Limits of detection could be improved by a factor of 2-4 in RF-mode compared with DC-mode. Operating the instrument in RF-mode allowed the detection of more compounds in the exhaled air compared with DC-mode. Incorporation of the IF considerably improved the performance of PTR-ToF-MS allowing the real-time monitoring of a larger number of potential breath biomarkers. Graphical abstract.


Assuntos
Testes Respiratórios , Espectrometria de Massas/métodos , Compostos Orgânicos Voláteis/análise , Adulto , Feminino , Humanos , Íons , Limite de Detecção , Masculino , Pessoa de Meia-Idade , Estudo de Prova de Conceito , Adulto Jovem
4.
Analyst ; 144(24): 7359-7367, 2019 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-31663533

RESUMO

Reactive exhaled volatile organic compounds (VOCs) such as nitrogen- and sulfur-containing substances may be related to diseases, metabolic processes and bacterial activity. As these compounds may interact with any surface of the analytical system, time-resolved monitoring and reliable quantification is difficult. We describe a proton transfer reaction time-of-flight mass spectrometry (PTR-ToF-MS) based analytical method for direct breath-resolved monitoring of reactive compounds. Aliphatic amines were used as test substances. Matrix adapted gas standards were generated by means of a liquid calibration unit. Calibration conditions were adapted in terms of materials, temperature and equilibration time. PTR-ToF-MS conditions were optimized in terms of inlet materials, transfer line and drift tube temperature and drift tube reduced electric field (E/N). Optimized PTR conditions in combination with inert materials and high temperatures considerably reduced the interactions of compounds with the surfaces of the analytical system. Good linearity (R2 > 0.99, RSDs < 5%) with LODs between 0.15 ppbV and 1.23 ppbV and LOQs between 0.24 ppbV and 1.94 ppbV could be achieved. The method was then applied to breath-resolved monitoring of reactive compounds in 17 healthy subjects after high and low oral protein challenge. Exhaled concentrations of trimethylamine, indole, methanethiol, dimethylsulfide, acetone, 2-propanol, 2-butanone and phenol showed significant changes after protein intake. Methanethiol concentrations increased 6-fold within minutes after the protein intake. Optimization of methods and instrument design enabled reliable breath-resolved PTR-MS based analysis of exhaled reactive VOCs in the sub-ppbV range. Continuous in vivo monitoring of exhaled amines and sulphur containing compounds may provide novel non-invasive insight into endogenous and gut bacteria driven protein metabolism.


Assuntos
Testes Respiratórios/métodos , Espectrometria de Massas/métodos , Compostos Orgânicos Voláteis/análise , Adulto , Dieta Rica em Proteínas , Dieta com Restrição de Proteínas , Feminino , Humanos , Limite de Detecção , Masculino , Pessoa de Meia-Idade , Estudo de Prova de Conceito , Adulto Jovem
5.
Ann Vasc Surg ; 49: 191-205, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29518504

RESUMO

BACKGROUND: Paraplegia due to spinal cord ischemia (SCI) is a serious complication after repair of thoracoabdominal aortic aneurysms. For prevention and early treatment of spinal ischemia, intraoperative monitoring of spinal cord integrity is essential. This study was intended to improve recognition of SCI through a combination of transcranial motor-evoked potentials (tc-MEPs), serum markers, and innovative breath analysis. METHODS: In 9 female German Landrace pigs, tc-MEPs were captured, markers of neuronal damage were determined in blood, and volatile organic compounds (VOCs) were analyzed in exhaled air. After thoraco-phrenico-laparotomy, SCI was initiated through sequential clamping (n = 4) or permanently ligating (n = 5) SAs of the abdominal and thoracic aorta in caudocranial orientation until a drop in the tc-MEPs to at least 25% of the baseline was recorded. VOCs in breath were determined by means of solid-phase microextraction coupled with gas chromatography-mass spectrometry. After waking up, clinical and neurological status was evaluated (Tarlov score). Spinal cord histology was obtained in postmortem. RESULTS: Permanent vessel ligature induced a worse neurological outcome and a higher number of necrotic motor neurons compared to clamping. Changes of serum markers remained unspecific. After laparotomy, exhaled acetone and isopropanol showed highest concentrations, and pentane and hexane increased during ischemia-reperfusion injury. CONCLUSIONS: To mimic spinal ischemia occurring in humans during aortic aneurysm repair, animal models have to be meticulously evaluated concerning vascular anatomy and function. Volatiles from breath indicated metabolic stress during surgery and oxidative damage through ischemia reperfusion. Breath VOCs may provide complimentary information to conventional monitoring methods.


Assuntos
Aorta Abdominal/cirurgia , Aorta Torácica/cirurgia , Biomarcadores/sangue , Testes Respiratórios/métodos , Potencial Evocado Motor , Monitorização Neurofisiológica Intraoperatória/métodos , Isquemia do Cordão Espinal/diagnóstico , Compostos Orgânicos Voláteis/metabolismo , Animais , Constrição , Modelos Animais de Doenças , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Ligadura , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Estresse Oxidativo , Valor Preditivo dos Testes , Microextração em Fase Sólida , Isquemia do Cordão Espinal/sangue , Isquemia do Cordão Espinal/etiologia , Isquemia do Cordão Espinal/fisiopatologia , Sus scrofa , Fatores de Tempo
6.
Biomed Chromatogr ; 32(10): e4285, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29761519

RESUMO

Volatile organic compounds (VOCs) emitted from in vitro cultures may reveal information on species and metabolism. Owing to low nmol L-1 concentration ranges, pre-concentration techniques are required for gas chromatography-mass spectrometry (GC-MS) based analyses. This study was intended to compare the efficiency of established micro-extraction techniques - solid-phase micro-extraction (SPME) and needle-trap micro-extraction (NTME) - for the analysis of complex VOC patterns. For SPME, a 75 µm Carboxen®/polydimethylsiloxane fiber was used. The NTME needle was packed with divinylbenzene, Carbopack X and Carboxen 1000. The headspace was sampled bi-directionally. Seventy-two VOCs were calibrated by reference standard mixtures in the range of 0.041-62.24 nmol L-1 by means of GC-MS. Both pre-concentration methods were applied to profile VOCs from cultures of Mycobacterium avium ssp. paratuberculosis. Limits of detection ranged from 0.004 to 3.93 nmol L-1 (median = 0.030 nmol L-1 ) for NTME and from 0.001 to 5.684 nmol L-1 (median = 0.043 nmol L-1 ) for SPME. NTME showed advantages in assessing polar compounds such as alcohols. SPME showed advantages in reproducibility but disadvantages in sensitivity for N-containing compounds. Micro-extraction techniques such as SPME and NTME are well suited for trace VOC profiling over cultures if the limitations of each technique is taken into account.


Assuntos
Técnicas Bacteriológicas/métodos , Microextração em Fase Sólida/métodos , Compostos Orgânicos Voláteis/análise , Aldeídos/análise , Células Cultivadas , Cromatografia Gasosa-Espectrometria de Massas , Cetonas/análise , Limite de Detecção , Modelos Lineares , Mycobacterium avium/citologia , Mycobacterium avium/metabolismo , Compostos de Nitrogênio/análise , Reprodutibilidade dos Testes , Compostos de Enxofre/análise
7.
BMC Cardiovasc Disord ; 17(1): 85, 2017 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-28320316

RESUMO

BACKGROUND: The aim of this study was to compare treatment of moderate to severe symptomatic mitral regurgitation (MR) with either conventional surgery or the mitral valve edge-to-edge device (MitraClip®) in very elderly patients. The newly introduced MitraClip device has demonstrated promising acute results in treating this patient cohort. Also noteworthy is the fact that patients who otherwise would have been denied surgery are increasingly referred for treatment with the MitraClip device. We sought to review our institutional experience, comparing outcomes in both surgical and MitraClip arms of treatment in the elderly population with symptomatic MR. METHODS: From October 2008 through October 2014, 136 consecutive patients aged ≥ 80 with moderate to severe symptomatic MR were scheduled for either conventional surgery or MitraClip intervention. 56 patients ≥ 80 were operated for symptomatic MR and 80 patients ≥ 80 were treated with the mitraClip device. Patients suitable for this study were identified from our hospital database. Patients ≥80 with moderate/severe symptomatic MR treated with either conventional surgery or the MitraClip device were eligible for our analysis. We compared the surgical patient cohort with the mitraClip patient cohort after eliminating patients that did not meet our inclusion criteria. Forty-two patients were identified from the conventional cohort who were then compared with 42 patients from the mitraClip cohort. Forty-two patients (50%) underwent mitral valve repair or replacement (40.5% functional MR, 59.5% organic/mixed MR) and 42 patients (50%) underwent MitraClip intervention (50% functional MR, 50% organic/mixed MR). Associated procedures in the conventional surgical group were myocardial revascularization 38%, pulmonary vein ablation 23.8%, left atrial appendage resection 52.4% and PFO occlusion 11.9%. RESULTS: Patients who underwent MitraClip treatment were though slightly older but the differences did not attain statistical significance (mean, 82.2 ± 1.65 vs 81.7 ± 1.35 years, p = 0,100), had lower LVEF (mean, 47.6 ± 14.2 vs 53.4 ± 14.3, p = 0.072), lower logistic EuroScore II (mean, 11.3 ± 5.63 vs 12.1 ± 10.6, p = 0.655) but higher STS risk score (mean, 11.8 ± 6.7 vs 8.1 ± 5.6, p = 0.008) respectively compared to surgical patients. Procedural success was 100% vs 96% in surgery and MitraClip groups respectively. Thirty -day mortality was 7.1% vs 4.8% (p = 1.000) in surgery and MitraClip group respectively. Residual postoperative MR ≥2 at discharge was present in none of the patients treated surgically, whereas this was the case in 10 (23.8%) patients treated with the MitraClip device. At 1 year a cumulative number of four (9.52%) patients died in the surgical group vs 9 (21.4%) patients who died in the MitraClip group. CONCLUSIONS: Elderly patients presenting with moderate to severe symptomatic MR may either be treated by conventional surgery or with the MitraClip device with acceptable acute outcomes. The decision for treatment with the MitraClip device should not depend on age alone rather on cumulative risk of conventional surgery. Concomitant cardiac pathologies, often times treated simultaneously during surgery for symptomatic MR may be omitted, if patients are scheduled outright to MitraClip treatment. The effect of concomitant cardiac pathologies left untreated at the time of interventional mitral valve repair on outcome after MitraClip therapy remain widely unknown.


Assuntos
Implante de Prótese de Valva Cardíaca/instrumentação , Próteses Valvulares Cardíacas , Anuloplastia da Valva Mitral/instrumentação , Insuficiência da Valva Mitral/cirurgia , Valva Mitral/cirurgia , Idoso de 80 Anos ou mais , Feminino , Alemanha , Implante de Prótese de Valva Cardíaca/efeitos adversos , Hemodinâmica , Humanos , Estimativa de Kaplan-Meier , Masculino , Valva Mitral/diagnóstico por imagem , Valva Mitral/fisiopatologia , Anuloplastia da Valva Mitral/efeitos adversos , Insuficiência da Valva Mitral/diagnóstico por imagem , Insuficiência da Valva Mitral/fisiopatologia , Seleção de Pacientes , Modelos de Riscos Proporcionais , Desenho de Prótese , Recuperação de Função Fisiológica , Estudos Retrospectivos , Medição de Risco , Fatores de Risco , Índice de Gravidade de Doença , Volume Sistólico , Fatores de Tempo , Resultado do Tratamento , Função Ventricular Esquerda
8.
BMC Emerg Med ; 17(1): 37, 2017 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-29202698

RESUMO

BACKGROUND: Contemporary resuscitation guidelines for basic life support recommend an immediate onset of cardiac compressions in case of cardiac arrest followed by rescue breaths. Effective ventilation is often omitted due to fear of doing harm and fear of infectious diseases. In order to improve ventilation a pre-stage of an automatic respirator was developed for use by laypersons. METHODS: Fifty-two healthy volunteers were ventilated by means of a prototype respirator via a full-face mask in a pilot study. The pre-stage public access ventilator (PAV) consisted of a low-cost self-designed turbine, with sensors for differential pressure, flow, FO2, FCO2 and 3-axis acceleration measurement. Sensor outputs were used to control the respirator and to recognize conditions relevant for efficiency of ventilation and patients' safety. Different respiratory manoeuvres were applied: a) pressure controlled ventilation (PCV), b) PCV with controlled leakage and c) PCV with simulated airway occlusion. Sensor signals were analysed to detect leakage and airway occlusion. Detection based upon sensor signals was compared with evaluation based on clinical observation and additional parameters such as exhaled CO2. RESULTS: Pressure controlled ventilation could be realized in all volunteers. Leakage was recognized with 93.5% sensitivity and 93.5% specificity. Simulated airway occlusion was detected with 91.8% sensitivity and 91.7% specificity. CONCLUSION: The pre-stage PAV was able to detect potential complications relevant for patients' safety such as leakage and airway occlusion in a proof of principle study. Prospectively, this device provides a respectable basis for the development of an automatic emergency respirator and may help to improve bystander resuscitation.


Assuntos
Parada Cardíaca Extra-Hospitalar/terapia , Respiração Artificial/métodos , Adulto , Obstrução das Vias Respiratórias/prevenção & controle , Serviços Médicos de Emergência/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Segurança do Paciente , Projetos Piloto , Ventiladores Mecânicos , Adulto Jovem
9.
Anal Chem ; 87(3): 1773-81, 2015 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-25517186

RESUMO

A fast detection method to analyze gaseous organic compounds in complex gas mixtures was developed, using a needle trap device (NTD) in conjunction with thermal-desorption photoionization time-of-flight mass spectrometry (TD-PI-TOFMS). The mass spectrometer was coupled via a deactivated fused silica capillary to an injector of a gas chromatograph. In the hot injector, the analytes collected on the NTD were thermally desorbed and directly transferred to the PI-TOFMS ion source. The molecules are softly ionized either by single photon ionization (SPI, 118 nm) or by resonance enhanced multiphoton ionization (REMPI, 266 nm), and the molecular ion signals are detected in the TOF mass analyzer. Analyte desorption and the subsequent PI-TOFMS detection step only lasts ten seconds. The specific selectivity of REMPI (i.e., aromatic compounds) and universal ionization characteristics render PI-MS as a promising detection system. As a first demonstrative application, the alveolar phase breath gas of healthy, nonsmoking subjects was sampled on NTDs. While smaller organic compounds such as acetone, acetaldehyde, isoprene, or cysteamine can be detected in the breath gas with SPI, REMPI depicts the aromatic substances phenol and indole at 266 nm. In the breath gas of a healthy, smoking male subject, several xenobiotic substances such as benzene, toluene, styrene, and ethylbenzene can be found as well. Furthermore, the NTD-REMPI-TOFMS setup was tested for breath gas taken from a mechanically ventilated pig under continuous intravenous propofol (2,6-diisopropylphenol, narcotic drug) infusion.


Assuntos
Testes Respiratórios/métodos , Espectrometria de Massas/métodos , Compostos Orgânicos/análise , Fótons , Propofol/análise , Xenobióticos/análise , Animais , Cromatografia Gasosa/métodos , Voluntários Saudáveis , Humanos , Hipnóticos e Sedativos/análise , Masculino , Pessoa de Meia-Idade , Agulhas , Suínos
10.
STAR Protoc ; 5(1): 102808, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38170664

RESUMO

Here, we present a protocol for using Early Data Visualization Script, a user-friendly software tool to visualize complex volatile metabolomics data in clinical setups. We describe steps for tabulating data and adjusting visual output to visualize complex time-resolved volatile omics data using simple charts and graphs. We then demonstrate possible modifications by detailing procedures for the adaptation of four basic functions. For complete details on the use and execution of this protocol, please refer to Sukul et al. (2022)1 and Remy et al. (2022).2.


Assuntos
Visualização de Dados , Metabolômica , Software
11.
Antioxidants (Basel) ; 13(2)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38397770

RESUMO

Due to their immediate exhalation after generation at the cellular/microbiome levels, exhaled volatile organic compounds (VOCs) may provide real-time information on pathophysiological mechanisms and the host response to infection. In recent years, the metabolic profiling of the most frequent respiratory infections has gained interest as it holds potential for the early, non-invasive detection of pathogens and the monitoring of disease progression and the response to therapy. Using previously unpublished data, randomly selected individuals from a COVID-19 test center were included in the study. Based on multiplex PCR results (non-SARS-CoV-2 respiratory pathogens), the breath profiles of 479 subjects with the presence or absence of flu-like symptoms were obtained using proton-transfer-reaction time-of-flight mass spectrometry. Among 223 individuals, one respiratory pathogen was detected in 171 cases, and more than one pathogen in 52 cases. A total of 256 subjects had negative PCR test results and had no symptoms. The exhaled VOC profiles were affected by the presence of Haemophilus influenzae, Streptococcus pneumoniae, and Rhinovirus. The endogenous ketone, short-chain fatty acid, organosulfur, aldehyde, and terpene concentrations changed, but only a few compounds exhibited concentration changes above inter-individual physiological variations. Based on the VOC origins, the observed concentration changes may be attributed to oxidative stress and antioxidative defense, energy metabolism, systemic microbial immune homeostasis, and inflammation. In contrast to previous studies with pre-selected patient groups, the results of this study demonstrate the broad inter-individual variations in VOC profiles in real-life screening conditions. As no unique infection markers exist, only concentration changes clearly above the mentioned variations can be regarded as indicative of infection or colonization.

12.
Sci Adv ; 10(14): eadh5543, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38569031

RESUMO

Natural gas is the primary fuel used in U.S. residences, yet little is known about its consumption patterns and drivers. We use daily county-level gas consumption data to assess the spatial patterns of the relationships and the sensitivities of gas consumption to outdoor air temperature across U.S. households. We fitted linear-plus-plateau functions to daily gas consumption data in 1000 counties, and derived two key coefficients: the heating temperature threshold (Tcrit) and the gas consumption rate change per 1°C temperature drop (Slope). We identified the main predictors of Tcrit and Slope (like income, employment rate, and building type) using interpretable machine learning models built on census data. Finally, we estimated a potential 2.47 million MtCO2 annual emission reduction in U.S. residences by gas savings due to household insulation improvements and hypothetical behavioral change toward reduced consumption by adopting a 1°C lower Tcrit than the current value.

13.
J Clim Chang Health ; 15: 100292, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38425789

RESUMO

Introduction: Climate change is a global phenomenon with far-reaching consequences, and its impact on human health is a growing concern. The intricate interplay of various factors makes it challenging to accurately predict and understand the implications of climate change on human well-being. Conventional methodologies have limitations in comprehensively addressing the complexity and nonlinearity inherent in the relationships between climate change and health outcomes. Objectives: The primary objective of this paper is to develop a robust theoretical framework that can effectively analyze and interpret the intricate web of variables influencing the human health impacts of climate change. By doing so, we aim to overcome the limitations of conventional approaches and provide a more nuanced understanding of the complex relationships involved. Furthermore, we seek to explore practical applications of this theoretical framework to enhance our ability to predict, mitigate, and adapt to the diverse health challenges posed by a changing climate. Methods: Addressing the challenges outlined in the objectives, this study introduces the Complex Adaptive Systems (CAS) framework, acknowledging its significance in capturing the nuanced dynamics of health effects linked to climate change. The research utilizes a blend of field observations, expert interviews, key informant interviews, and an extensive literature review to shape the development of the CAS framework. Results and discussion: The proposed CAS framework categorizes findings into six key sub-systems: ecological services, extreme weather, infectious diseases, food security, disaster risk management, and clinical public health. The study employs agent-based modeling, using causal loop diagrams (CLDs) tailored for each CAS sub-system. A set of identified variables is incorporated into predictive modeling to enhance the understanding of health outcomes within the CAS framework. Through a combination of theoretical development and practical application, this paper aspires to contribute valuable insights to the interdisciplinary field of climate change and health. Integrating agent-based modeling and CLDs enhances the predictive capabilities required for effective health outcome analysis in the context of climate change. Conclusion: This paper serves as a valuable resource for policymakers, researchers, and public health professionals by employing a CAS framework to understand and assess the complex network of health impacts associated with climate change. It offers insights into effective strategies for safeguarding human health amidst current and future climate challenges.

14.
Anal Chem ; 85(21): 10321-9, 2013 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-24044609

RESUMO

Analysis of volatile organic compounds (VOCs) in breath holds great promise for noninvasive diagnostic applications. However, concentrations of VOCs in breath may change quickly, and actual and previous uptakes of exogenous substances, especially in the clinical environment, represent crucial issues. We therefore adapted proton-transfer-reaction-time-of-flight-mass spectrometry for real time breath analysis in the clinical environment. For reasons of medical safety, a 6 m long heated silcosteel transfer line connected to a sterile mouth piece was used for breath sampling from spontaneously breathing volunteers and mechanically ventilated patients. A time resolution of 200 ms was applied. Breath from mechanically ventilated patients was analyzed immediately after cardiac surgery. Breath from 32 members of staff was analyzed in the post anesthetic care unit (PACU). In parallel, room air was measured continuously over 7 days. Detection limits for breath-resolved real time measurements were in the high pptV/low ppbV range. Assignment of signals to alveolar or inspiratory phases was done automatically by a matlab-based algorithm. Quickly and abruptly occurring changes of patients' clinical status could be monitored in terms of breath-to-breath variations of VOC (e.g. isoprene) concentrations. In the PACU, room air concentrations mirrored occupancy. Exhaled concentrations of sevoflurane strongly depended on background concentrations in all participants. In combination with an optimized inlet system, the high time and mass resolution of PTR-ToF-MS provides optimal conditions to trace quick changes of breath VOC profiles and to assess effects from the clinical environment.


Assuntos
Testes Respiratórios/métodos , Espectrometria de Massas/métodos , Compostos Orgânicos Voláteis/análise , Algoritmos , Humanos , Limite de Detecção , Prótons
15.
Catheter Cardiovasc Interv ; 82(4): E552-63, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23359543

RESUMO

OBJECTIVES: To summarize our single Institution experience with staged total percutaneous management of aorto-mitral pathology. BACKGROUND: Percutaneous treatment of aortic valve stenosis (AVS) and mitral valve regurgitation (MVR) has been recently proposed for patients at high surgical risk. METHODS: Data concerning consecutive patients undergoing percutaneous transcatheter AV implantation (TAVI) followed by MV repair with MitraClip® were prospectively collected and analyzed. RESULTS: From January 2010 to February 2012 a total of 254 patients were referred to undergo TAVI in our Institution. Seventeen (6.7%) had preoperative severe MVR that remained unchanged after TAVI. Due to exacerbation of symptoms 12 patients were subsequently submitted to MV repair with the MitraClip® device. Mean age was 79 years (72-86 years), median Ambler score was 30.1 (17.2-42.6) and EuroSCORE 22.3 (10.2-48.6). Procedural success rate was 100%. Postprocedural hospitalization was 7.1 ± 2.7 and 4.6 ± 0.9 days after TAVI and MV repair, respectively. Six months follow-up echocardiography confirms improvement in LV-EF (37.2 ± 9.9 vs. 43.5 ± 10.7, P < 0.0001). No patient presents MVR exceeding grade I(+) or prosthetic aortic insufficiency > I grade and all patients experienced an improvement in functional status. CONCLUSIONS: Percutaneous treatment of AVS and MVR is feasible and safe. A tailored approach should be considered to treat firstly the AVS and subsequently the MVR when severe MV dysfunction and symptoms persist. Short-term durability of this combined percutaneous approach seems encouraging and justifies the economical burden to treat patients that have no other option.


Assuntos
Estenose da Valva Aórtica/terapia , Valva Aórtica/patologia , Cateterismo Cardíaco , Implante de Prótese de Valva Cardíaca/métodos , Insuficiência da Valva Mitral/terapia , Idoso , Idoso de 80 Anos ou mais , Valva Aórtica/fisiopatologia , Insuficiência da Valva Aórtica/etiologia , Estenose da Valva Aórtica/diagnóstico , Estenose da Valva Aórtica/fisiopatologia , Cateterismo Cardíaco/efeitos adversos , Cateterismo Cardíaco/instrumentação , Ecocardiografia Doppler em Cores , Estudos de Viabilidade , Feminino , Alemanha , Implante de Prótese de Valva Cardíaca/efeitos adversos , Implante de Prótese de Valva Cardíaca/instrumentação , Humanos , Tempo de Internação , Masculino , Insuficiência da Valva Mitral/diagnóstico , Insuficiência da Valva Mitral/fisiopatologia , Estudos Prospectivos , Índice de Gravidade de Doença , Volume Sistólico , Fatores de Tempo , Tomografia Computadorizada por Raios X , Resultado do Tratamento , Função Ventricular Esquerda
16.
Catheter Cardiovasc Interv ; 81(7): 1224-31, 2013 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22745049

RESUMO

OBJECTIVES: The purpose of this study was to compare outcomes using standard clipping (SC) (one to two clips) or multiple clipping (MC) (more than two clips). BACKGROUND: MitraClip implantation using MC has been proposed to treat severe mitral regurgitation (MR) in high-risk patients. METHODS AND RESULTS: A tailored strategy was used implanting as many clips as required to eliminate MR. A total of 85 consecutive patients [78 ± 6 years, 48 men (56.5%) ] with MR (grade 3+ or 4+) were included. EuroSCORE was 24 ± 12 (2.5-56.3) and STS-score 12 ± 7 (1.2-31.2). SC was used in 61 (71.8%) and MC in 24 (28.2%) patients. Patients in MC group had larger mitral valve (MV) annuli (P = 0.025), MV orifice areas (MVOA) (P = 0.01), and MR degree (P = 0.005). Successful clip placement was achieved in 82 patients (96.5%). At discharge, no patient had grade 4+ MR. MR 3+ presented in 4 patients (7.0%) in the SC group and in 1 (4.5%) in the MC group (P = 0.72). There were 3 (3.5%) in-hospital deaths. Follow up (211 ± 173 days, range 4-652) echocardiography confirmed similar MVOA (P = 0.83) and MV gradients (P = 0.54) in the both groups. At linear regression there was no independent correlation between clips number and postoperative MVOA/gradient. One-year survival was 71.1% without difference between groups (P = 0.74). CONCLUSION: Although the hemodynamic and anatomical basis of MR may differ, every procedure should aim at eliminating MR. In some patients this goal can be achieved using MC with minimized risk of MV stenosis if preoperative anatomy/mechanism of MV regurgitation are adequately assessed.


Assuntos
Cateterismo Cardíaco/instrumentação , Insuficiência da Valva Mitral/terapia , Valva Mitral/fisiopatologia , Instrumentos Cirúrgicos , Idoso , Idoso de 80 Anos ou mais , Cateterismo Cardíaco/efeitos adversos , Cateterismo Cardíaco/mortalidade , Distribuição de Qui-Quadrado , Ecocardiografia , Desenho de Equipamento , Feminino , Hemodinâmica , Mortalidade Hospitalar , Humanos , Estimativa de Kaplan-Meier , Modelos Lineares , Modelos Logísticos , Masculino , Valva Mitral/diagnóstico por imagem , Insuficiência da Valva Mitral/diagnóstico , Insuficiência da Valva Mitral/mortalidade , Insuficiência da Valva Mitral/fisiopatologia , Estenose da Valva Mitral/etiologia , Estenose da Valva Mitral/fisiopatologia , Análise Multivariada , Fatores de Risco , Índice de Gravidade de Doença , Fatores de Tempo , Resultado do Tratamento
17.
Anal Bioanal Chem ; 405(10): 3105-15, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23388692

RESUMO

Needle trap devices (NTDs) have shown many advantages such as improved detection limits, reduced sampling time and volume, improved stability, and reproducibility if compared with other techniques used in breath analysis such as solid-phase extraction and solid-phase micro-extraction. Effects of sampling flow (2-30 ml/min) and volume (10-100 ml) were investigated in dry gas standards containing hydrocarbons, aldehydes, and aromatic compounds and in humid breath samples. NTDs contained (single-bed) polymer packing and (triple-bed) combinations of divinylbenzene/Carbopack X/Carboxen 1000. Substances were desorbed from the NTDs by means of thermal expansion and analyzed by gas chromatography-mass spectrometry. An automated CO2-controlled sampling device for direct alveolar sampling at the point-of-care was developed and tested in pilot experiments. Adsorption efficiency for small volatile organic compounds decreased and breakthrough increased when sampling was done with polymer needles from a water-saturated matrix (breath) instead from dry gas. Humidity did not affect analysis with triple-bed NTDs. These NTDs showed only small dependencies on sampling flow and low breakthrough from 1-5 %. The new sampling device was able to control crucial parameters such as sampling flow and volume. With triple-bed NTDs, substance amounts increased linearly with increasing sample volume when alveolar breath was pre-concentrated automatically. When compared with manual sampling, automatic sampling showed comparable or better results. Thorough control of sampling and adequate choice of adsorption material is mandatory for application of needle trap micro-extraction in vivo. The new CO2-controlled sampling device allows direct alveolar sampling at the point-of-care without the need of any additional sampling, storage, or pre-concentration steps.


Assuntos
Testes Respiratórios/métodos , Alvéolos Pulmonares/química , Microextração em Fase Sólida/métodos , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/isolamento & purificação , Adsorção , Testes Respiratórios/instrumentação , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Agulhas , Sistemas Automatizados de Assistência Junto ao Leito , Microextração em Fase Sólida/instrumentação
18.
Commun Biol ; 6(1): 999, 2023 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-37777700

RESUMO

Plants, animals and humans metabolically produce volatile isoprene (C5H8). Humans continuously exhale isoprene and exhaled concentrations differ under various physio-metabolic and pathophysiological conditions. Yet unknown metabolic origin hinders isoprene to reach clinical practice as a biomarker. Screening 2000 individuals from consecutive mass-spectrometric studies, we herein identify five healthy German adults without exhaled isoprene. Whole exome sequencing in these adults reveals only one shared homozygous (European prevalence: <1%) IDI2 stop-gain mutation, which causes losses of enzyme active site and Mg2+-cofactor binding sites. Consequently, the conversion of isopentenyl diphosphate to dimethylallyl diphosphate (DMAPP) as part of the cholesterol metabolism is prevented in these adults. Targeted sequencing depicts that the IDI2 rs1044261 variant (p.Trp144Stop) is heterozygous in isoprene deficient blood-relatives and absent in unrelated isoprene normal adults. Wild-type IDI1 and cholesterol metabolism related serological parameters are normal in all adults. IDI2 determines isoprene production as only DMAPP sources isoprene and unlike plants, humans lack isoprene synthase and its enzyme homologue. Human IDI2 is expressed only in skeletal-myocellular peroxisomes and instant spikes in isoprene exhalation during muscle activity underpins its origin from muscular lipolytic cholesterol metabolism. Our findings translate isoprene as a clinically interpretable breath biomarker towards potential applications in human medicine.


Assuntos
Colesterol , Multiômica , Animais , Humanos , Biomarcadores
19.
Eur Respir J ; 40(3): 706-13, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22267752

RESUMO

Noninvasive breath analysis may provide valuable information for cancer recognition if disease-specific volatile biomarkers could be identified. In order to compare nondiseased and diseased tissue in vivo, this study took advantage of the special circumstances of one-lung ventilation (OLV) during lung-surgery. 15 cancer patients undergoing lung resection with OLV were enrolled. From each patient, alveolar breath samples were taken separately from healthy and diseased lungs before and after tumour resection. Volatile substances were pre-concentrated by means of solid-phase microextraction, and were separated, identified and quantified by means of gas chromatography-mass spectrometry. Different classes of volatile substances could be identified according to their concentration profiles. Due to prolonged fasting and activation of lipolysis, concentrations of endogenous acetone significantly increased during surgery. Exogenous substances, such as benzene or cyclohexanone, showed typical washout exhalation kinetics. Exhaled concentrations of potentially tumour associated substances, such as butane or pentane, were different for nondiseased and diseased lungs and decreased significantly after surgery. Separate analysis of volatile substances exhaled from healthy and diseased lungs in the same patient, together with thorough consideration of substance origins and exhalation kinetics offers unique opportunities of biomarker recognition and evaluation.


Assuntos
Neoplasias Pulmonares/diagnóstico , Ventilação Monopulmonar , Acetona/análise , Idoso , Benzeno/análise , Biomarcadores Tumorais/análise , Testes Respiratórios , Butanos/análise , Cicloexanonas/análise , Feminino , Cromatografia Gasosa-Espectrometria de Massas/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Pentanos/análise , Microextração em Fase Sólida , Compostos Orgânicos Voláteis/análise
20.
Sci Rep ; 12(1): 17926, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36289276

RESUMO

Being the proximal matrix, breath offers immediate metabolic outlook of respiratory infections. However, high viral load in exhalations imposes higher transmission risk that needs improved methods for safe and repeatable analysis. Here, we have advanced the state-of-the-art methods for real-time and offline mass-spectrometry based analysis of exhaled volatile organic compounds (VOCs) under SARS-CoV-2 and/or similar respiratory conditions. To reduce infection risk, the general experimental setups for direct and offline breath sampling are modified. Certain mainstream and side-stream viral filters are examined for direct and lab-based applications. Confounders/contributions from filters and optimum operational conditions are assessed. We observed immediate effects of infection safety mandates on breath biomarker profiles. Main-stream filters induced physiological and analytical effects. Side-stream filters caused only systematic analytical effects. Observed substance specific effects partly depended on compound's origin and properties, sampling flow and respiratory rate. For offline samples, storage time, -conditions and -temperature were crucial. Our methods provided repeatable conditions for point-of-care and lab-based breath analysis with low risk of disease transmission. Besides breath VOCs profiling in spontaneously breathing subjects at the screening scenario of COVID-19/similar test centres, our methods and protocols are applicable for moderately/severely ill (even mechanically-ventilated) and highly contagious patients at the intensive care.


Assuntos
COVID-19 , Compostos Orgânicos Voláteis , Humanos , Compostos Orgânicos Voláteis/análise , COVID-19/diagnóstico , SARS-CoV-2 , Testes Respiratórios/métodos , Expiração , Biomarcadores/análise , Monitorização Fisiológica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA