Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 113(47): E7390-E7398, 2016 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-27821772

RESUMO

Neurotransporters located in synaptic vesicles are essential for communication between nerve cells in a process mediated by neurotransmitters. Vesicular monoamine transporter (VMAT), a member of the largest superfamily of transporters, mediates transport of monoamines to synaptic vesicles and storage organelles in a process that involves exchange of two H+ per substrate. VMAT transport is inhibited by the competitive inhibitor reserpine, a second-line agent to treat hypertension, and by the noncompetitive inhibitor tetrabenazine, presently in use for symptomatic treatment of hyperkinetic disorders. During the transport cycle, VMAT is expected to occupy at least three different conformations: cytoplasm-facing, occluded, and lumen-facing. The lumen- to cytoplasm-facing transition, facilitated by protonation of at least one of the essential membrane-embedded carboxyls, generates a binding site for reserpine. Here we have identified residues in the cytoplasmic gate and show that mutations that disrupt the interactions in this gate also shift the equilibrium toward the cytoplasm-facing conformation, emulating the effect of protonation. These experiments provide significant insight into the role of proton translocation in the conformational dynamics of a mammalian H+-coupled antiporter, and also identify key aspects of the mode of action and binding of two potent inhibitors of VMAT2: reserpine binds the cytoplasm-facing conformation, and tetrabenazine binds the lumen-facing conformation.


Assuntos
Mutação , Reserpina/metabolismo , Tetrabenazina/metabolismo , Proteínas Vesiculares de Transporte de Monoamina/química , Proteínas Vesiculares de Transporte de Monoamina/genética , Animais , Sítios de Ligação , Citoplasma/genética , Citoplasma/metabolismo , Células HEK293 , Humanos , Modelos Moleculares , Conformação Proteica , Prótons , Ratos , Proteínas Vesiculares de Transporte de Monoamina/metabolismo
2.
Trends Biochem Sci ; 37(6): 215-9, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22444835

RESUMO

It is usually assumed that to ensure proper function, membrane proteins must be inserted in a unique topology. However, a number of dimeric small multidrug transporters can function in the membrane in various topologies. Thus, the dimers can be a random mixture of NiCi (N and C termini facing the cell cytoplasm) and NoCo (N and C termini facing the outside) orientation. In addition, the dimer functions whether the two protomers are parallel (N and C termini of both protomers on the same side of the membrane) or antiparallel (N and C termini of each protomer on opposite sides of the membrane). This unique phenomenon provides strong support for a simple mechanism of transport where the directionality is determined solely by the driving force.


Assuntos
Antiporters/química , Proteínas de Escherichia coli/química , Escherichia coli/química , Proteínas de Membrana/química , Antiporters/genética , Membrana Celular/química , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Membrana/genética , Regiões Promotoras Genéticas , Biossíntese de Proteínas , Conformação Proteica , Multimerização Proteica , Transporte Proteico , Relação Estrutura-Atividade
3.
Proc Natl Acad Sci U S A ; 110(15): E1332-41, 2013 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-23530208

RESUMO

Vesicular monoamine transporter 2 (VMAT2) catalyzes transport of monoamines into storage vesicles in a process that involves exchange of the charged monoamine with two protons. VMAT2 is a member of the DHA12 family of multidrug transporters that belongs to the major facilitator superfamily (MFS) of secondary transporters. Here we present a homology model of VMAT2, which has the standard MFS fold, that is, with two domains of six transmembrane helices each which are related by twofold pseudosymmetry and whose axis runs normal to the membrane and between the two halves. Demonstration of the essential role of a membrane-embedded glutamate and confirmation of the existence of a hydrogen bond probably involved in proton transport provide experimental evidence that validates some of the predictions inherent to the model. Moreover, we show the essential role of residues at two anchor points between the two bundles. These residues appear to function as molecular hinge points about which the two six transmembrane-helix bundles flex and straighten to open and close the pathways on either side of the membrane as required for transport. Polar residues that create a hydrogen bond cluster form one of the anchor points of VMAT2. The other results from hydrophobic interactions. Residues at the anchor points are strongly conserved in other MFS transporters in one way or another, suggesting that interactions at these locations will be critical in most, if not all, MFS transporters.


Assuntos
Modelos Moleculares , Proteínas Vesiculares de Transporte de Monoamina/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Sítios de Ligação , Transporte Biológico , Membrana Celular/metabolismo , Citoplasma/metabolismo , Células HEK293 , Humanos , Ligação de Hidrogênio , Cinética , Dados de Sequência Molecular , Plasmídeos/metabolismo , Conformação Proteica , Ratos , Especificidade por Substrato
4.
J Biol Chem ; 289(49): 34229-40, 2014 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-25336661

RESUMO

Transporters essential for neurotransmission in mammalian organisms and bacterial multidrug transporters involved in antibiotic resistance are evolutionarily related. To understand in more detail the evolutionary aspects of the transformation of a bacterial multidrug transporter to a mammalian neurotransporter and to learn about mechanisms in a milieu amenable for structural and biochemical studies, we identified, cloned, and partially characterized bacterial homologues of the rat vesicular monoamine transporter (rVMAT2). We performed preliminary biochemical characterization of one of them, Brevibacillus brevis monoamine transporter (BbMAT), from the bacterium B. brevis. BbMAT shares substrates with rVMAT2 and transports them in exchange with >1H(+), like the mammalian transporter. Here we present a homology model of BbMAT that has the standard major facilitator superfamily fold; that is, with two domains of six transmembrane helices each, related by 2-fold pseudosymmetry whose axis runs normal to the membrane and between the two halves. The model predicts that four carboxyl residues, a histidine, and an arginine are located in the transmembrane segments. We show here that two of the carboxyls are conserved, equivalent to the corresponding ones in rVMAT2, and are essential for H(+)-coupled transport. We conclude that BbMAT provides an excellent experimental paradigm for the study of its mammalian counterparts and bacterial multidrug transporters.


Assuntos
Proteínas de Bactérias/química , Monoaminas Biogênicas/química , Brevibacillus/química , Proteínas de Transporte/química , Proteínas Vesiculares de Transporte de Monoamina/química , Sequência de Aminoácidos , Animais , Arginina/química , Arginina/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Monoaminas Biogênicas/metabolismo , Brevibacillus/genética , Brevibacillus/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Farmacorresistência Bacteriana , Escherichia coli/genética , Escherichia coli/metabolismo , Evolução Molecular , Expressão Gênica , Histidina/química , Histidina/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Dobramento de Proteína , Ratos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia Estrutural de Proteína , Relação Estrutura-Atividade , Especificidade por Substrato , Transmissão Sináptica/fisiologia , Proteínas Vesiculares de Transporte de Monoamina/genética , Proteínas Vesiculares de Transporte de Monoamina/metabolismo
5.
Proc Natl Acad Sci U S A ; 109(42): 16894-9, 2012 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-23035252

RESUMO

EmrE, a multidrug antiporter from Escherichia coli, has presented biochemists with unusual surprises. Here we describe the transformation of EmrE, a drug/H(+) antiporter to a polyamine importer by a single mutation. Antibiotic resistance in microorganisms may arise by mutations at certain chromosomal loci. To investigate this phenomenon, we used directed evolution of EmrE to assess the rate of development of novel specificities in existing multidrug transporters. Strikingly, when a library of random mutants of EmrE was screened for resistance to two major antibacterial drugs--norfloxacin, a fluoroquinolone, and erythromycin, a macrolide--proteins with single mutations were found capable of conferring resistance. The mutation conferring erythromycin resistance resulted from substitution of a fully conserved and essential tryptophan residue to glycine, and, as expected, this protein lost its ability to recognize and transport the classical EmrE substrates. However, this protein functions now as an electrochemical potential driven importer of a new set of substrates: aliphatic polyamines. This mutant provides a unique paradigm to understand the function and evolution of distinct modes of transport.


Assuntos
Antiporters/genética , Antiporters/metabolismo , Farmacorresistência Bacteriana Múltipla/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Mutação/genética , Poliaminas/metabolismo , Radioisótopos de Carbono/metabolismo , Evolução Molecular Direcionada , Eritromicina , Mutagênese , Norfloxacino , Plasmídeos/genética , Proteolipídeos/metabolismo , Putrescina/metabolismo
6.
J Biol Chem ; 288(45): 32160-32171, 2013 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-24062308

RESUMO

Vesicular monoamine transporter 2 (VMAT2) transports monoamines into storage vesicles in a process that involves exchange of the charged monoamine with two protons. VMAT2 is a member of the DHA12 family of multidrug transporters that belongs to the major facilitator superfamily of secondary transporters. Tetrabenazine (TBZ) is a non-competitive inhibitor of VMAT2 that is used in the treatment of hyperkinetic disorders associated with Huntington disease and Tourette syndrome. Previous biochemical studies suggested that the recognition site for TBZ and monoamines is different. However, the precise mechanism of TBZ interaction with VMAT2 remains unknown. Here we used a random mutagenesis approach and selected TBZ-resistant mutants. The mutations clustered around the lumenal opening of the transporter and mapped to either conserved proline or glycine, or to residues immediately adjacent to conserved proline and glycine. Directed mutagenesis provides further support for the essential role of the latter residues. Our data strongly suggest that the conserved α-helix breaking residues identified in this work play an important role in conformational rearrangements required for TBZ binding and substrate transport. Our results provide a novel insight into the mechanism of transport and TBZ binding by VMAT2.


Assuntos
Inibidores da Captação Adrenérgica/farmacologia , Tetrabenazina/farmacologia , Proteínas Vesiculares de Transporte de Monoamina/antagonistas & inibidores , Proteínas Vesiculares de Transporte de Monoamina/metabolismo , Inibidores da Captação Adrenérgica/farmacocinética , Animais , Sítios de Ligação , Transporte Biológico Ativo/efeitos dos fármacos , Transporte Biológico Ativo/fisiologia , Células HEK293 , Humanos , Doença de Huntington/tratamento farmacológico , Doença de Huntington/genética , Doença de Huntington/metabolismo , Mutagênese Sítio-Dirigida , Estrutura Secundária de Proteína , Ratos , Saccharomyces cerevisiae , Tetrabenazina/farmacocinética , Síndrome de Tourette/tratamento farmacológico , Síndrome de Tourette/genética , Síndrome de Tourette/metabolismo , Proteínas Vesiculares de Transporte de Monoamina/genética
7.
J Gen Physiol ; 156(3)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38294433

RESUMO

The study by Lucero et al. (https://doi.org/10.1085/jgp.202313464) sheds light on the remarkable capabilities of bacterial transporters to adapt to new selective pressures. Their findings provide insight into the mechanism of a subtype of SMR transporters.


Assuntos
Diabetes Mellitus , Águas Residuárias , Humanos , Resistência Microbiana a Medicamentos , Proteínas de Membrana Transportadoras , Pressão
8.
Trends Pharmacol Sci ; 45(5): 385-387, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38429134

RESUMO

Vesicular monoamine transporter (VMAT)-2 has a crucial role in the neurotransmission of biogenic amines. Recently, Dalton et al., Pidathala et al., Wu et al., and Wang et al. individually reported cryo-electron microscopy (EM) structures of human VMAT2, offering opportunities for developing improved therapeutics and deep insights into the functioning of this protein.


Assuntos
Microscopia Crioeletrônica , Desenvolvimento de Medicamentos , Proteínas Vesiculares de Transporte de Monoamina , Proteínas Vesiculares de Transporte de Monoamina/antagonistas & inibidores , Proteínas Vesiculares de Transporte de Monoamina/metabolismo , Humanos , Animais
9.
J Bacteriol ; 194(24): 6766-70, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23042996

RESUMO

Transporters of the small multidrug resistance (SMR) family are small homo- or heterodimers that confer resistance to multiple toxic compounds by exchanging substrate with protons. Despite the wealth of biochemical information on EmrE, the most studied SMR member, a high-resolution three-dimensional structure is missing. To provide proteins that are more amenable to biophysical and structural studies, we identified and partially characterized SMR transporters from bacteria living under extreme conditions of temperature and radiation. Interestingly, these homologues as well as EmrE confer resistance to streptomycin and tobramycin, two aminoglycoside antibiotics widely used in clinics. These are hydrophilic and clinically important substrates of SMRs, and study of their mode of action should contribute to understanding the mechanism of transport and to combating the phenomenon of multidrug resistance. Furthermore, our study of one of the homologues, a putative heterodimer, supports the suggestion that in the SMR family, heterodimers can also function as homodimers.


Assuntos
Antiporters/genética , Antiporters/metabolismo , Farmacorresistência Bacteriana Múltipla/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Sequência de Aminoácidos , Antiporters/química , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Deinococcus/efeitos dos fármacos , Deinococcus/genética , Proteínas de Escherichia coli/química , Proteínas Associadas à Resistência a Múltiplos Medicamentos/química , Alinhamento de Sequência , Estreptomicina/farmacologia , Tobramicina/farmacologia
10.
EMBO J ; 27(1): 17-26, 2008 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-18059473

RESUMO

EmrE is a small H+-coupled multidrug transporter in Escherichia coli. Claims have been made for an antiparallel topology of this homodimeric protein. However, our own biochemical studies performed with detergent-solubilized purified protein support a parallel topology of the protomers. We developed an alternative approach to constrain the relative topology of the protomers within the dimer so that their activity can be assayed also in vivo before biochemical handling. Tandem EmrE was built with two identical monomers genetically fused tail to head (C-terminus of the first to N-terminus of the second monomer) with hydrophilic linkers of varying length. All the constructs conferred resistance to ethidium by actively removing it from the cytoplasm. The purified proteins bound substrate and transported methyl viologen into proteoliposomes by a proton-dependent mechanism. A tandem where one of the essential glutamates was replaced with glutamine transported only monovalent substrates and displayed a modified stoichiometry. The results support a parallel topology of the protomers in the functional dimer. The implications regarding insertion and evolution of membrane proteins are discussed.


Assuntos
Antiporters/química , Antiporters/genética , Farmacorresistência Bacteriana Múltipla/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas Recombinantes de Fusão/síntese química , Proteínas Recombinantes de Fusão/genética , Sequência de Aminoácidos , Transporte Biológico Ativo/genética , Citoplasma/química , Citoplasma/genética , Dimerização , Transporte de Elétrons/genética , Escherichia coli/química , Etídio/química , Etídio/farmacocinética , Dados de Sequência Molecular , Estrutura Secundária de Proteína/genética , Proteínas Recombinantes de Fusão/química , Especificidade por Substrato/genética , Termodinâmica
11.
Proc Natl Acad Sci U S A ; 106(22): 9051-6, 2009 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-19451626

RESUMO

Multidrug transporters provide a survival strategy for living organisms. As expected given their central role in survival, these transporters are ubiquitous, and in many genomes, several genes coding for putative transporters have been identified. However, in an organism such as Escherichia coli mutations in genes coding for transporters other than the major AcrAB-TolC multidrug efflux transporter have only a marginal effect on phenotype. Thus, whether the physiological role of the transporters identified is indeed drug export has been questioned. We show here that the minor effect of single mutations is due to the overlapping functionality of several transporters. This was revealed by generating multiple chromosomal deletion mutations in genes coding for transporters that share the same substrate and testing their effect on the resistance phenotype. In addition, complementation studies imply that AcrAB-TolC confers robust resistance provided that single-component transporters in the plasma membrane are functional. This finding supports the contention that hydrophobic drugs are removed in a 2-stage process: AcrAB-TolC removes substrates from the periplasmic space, while single-component transporters remove them from the cell. The overlapping specificities of the transporters ensure coverage of a wide range of xenobiotics and provide robustness in the response to environmental stress. This strategy also confers evolvability to the organism by reducing constraints on change and allowing the accumulation of nonlethal variation.


Assuntos
Antiporters/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Farmacorresistência Bacteriana/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Lipoproteínas/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Acriflavina/metabolismo , Acriflavina/farmacologia , Anti-Infecciosos Locais/metabolismo , Anti-Infecciosos Locais/farmacologia , Antiporters/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Etídio/metabolismo , Etídio/farmacologia , Deleção de Genes , Proteínas de Membrana Transportadoras/genética , Periplasma/metabolismo
12.
Trends Biochem Sci ; 32(6): 252-8, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17452106

RESUMO

When biochemistry meets structural biology a more complete understanding of the mechanism of biological macromolecules is usually achieved. Several high-resolution structures of ion-coupled transporters have enriched the understanding of mechanisms of substrate recognition, translocation and coupling of substrate fluxes. However, two X-ray structures of EmrE, the smallest ion-coupled multi-drug transporter, raised questions over the veracity of the structural model and represented a cautionary tale about the difficulty of determining the 3D structures of membrane proteins and the dangers of ignoring biochemical results. The 3D structures of EmrE have since been retracted because of faulty software, but the suggestion that the protomers in the dimer are in an antiparallel topological orientation sparked controversy that is still ongoing.


Assuntos
Antiporters/química , Proteínas de Escherichia coli/química , Antiporters/efeitos dos fármacos , Cristalografia por Raios X , Detergentes/farmacologia , Dimerização , Proteínas de Escherichia coli/efeitos dos fármacos , Proteínas de Membrana/química , Modelos Moleculares , Estrutura Secundária de Proteína/efeitos dos fármacos , Retratação de Publicação como Assunto , Software
13.
J Biol Chem ; 285(7): 5076-84, 2010 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-20007701

RESUMO

The vesicular neurotransmitter transporter VMAT2 is responsible for the transport of monoamines into synaptic and storage vesicles. VMAT2 is the target of many psychoactive drugs and is essential for proper neurotransmission and survival. Here we describe a new expression system in Saccharomyces cerevisiae that takes advantage of the polyspecificity of VMAT2. Expression of rVMAT2 confers resistance to acriflavine and to the parkinsonian toxin 1-methyl-4-phenylpyridinium (MPP(+)) by their removal into the yeast vacuole. This expression system allowed identification of a new substrate, acriflavine, and isolation of mutants with modified affinity to tetrabenazine (TBZ), a non-competitive inhibitor of VMAT2 that is used in the treatment of various movement disorders including Tourette syndrome and Huntington chorea. Whereas one type of mutant obtained displayed decreased affinity to TBZ, a second type showed only a slight decrease in the affinity to TBZ, displayed a higher K(m) to the neurotransmitter serotonin, but conferred increased resistance to acriflavine and MPP(+). A protein where both types of mutations were combined (with only three amino acid replacements) lost most of the properties of the neurotransmitter transporter (TBZ-insensitive, no transport of neurotransmitter) but displayed enhanced resistance to the above toxicants. The work described here shows that in the case of rVMAT2, loss of traits acquired in evolution of function (such as serotonin transport and TBZ binding) bring about an improvement in older functions such as resistance to toxic compounds. A process that has taken millions of years of evolution can be reversed by three mutations.


Assuntos
Evolução Molecular , Proteínas de Transporte de Neurotransmissores/metabolismo , Proteínas Vesiculares de Transporte de Monoamina/metabolismo , 1-Metil-4-fenilpiridínio/farmacologia , Acriflavina/farmacologia , Animais , Farmacorresistência Fúngica/genética , Farmacorresistência Fúngica/fisiologia , Microscopia Confocal , Proteínas de Transporte de Neurotransmissores/genética , Ratos , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Tetrabenazina/farmacologia , Proteínas Vesiculares de Transporte de Monoamina/genética
14.
J Biol Chem ; 285(20): 15234-15244, 2010 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-20308069

RESUMO

Inverted repeats in ion-coupled transporters have evolved independently in many unrelated families. It has been suggested that this inverted symmetry is an essential element of the mechanism that allows for the conformational transitions in transporters. We show here that small multidrug transporters offer a model for the evolution of such repeats. This family includes both homodimers and closely related heterodimers. In the former, the topology determinants, evidently identical in each protomer, are weak, and we show that for EmrE, an homodimer from Escherichia coli, the insertion into the membrane is random, and dimers are functional whether they insert into the cytoplasmic membrane with the N- and C-terminal domains facing the inside or the outside of the cell. Also, mutants designed to insert with biased topology are functional regardless of the topology. In the case of EbrAB, a heterodimer homologue supposed to interact antiparallel, we show that one of the subunits, EbrB, can also function as a homodimer, most likely in a parallel mode. In addition, the EmrE homodimer can be forced to an antiparallel topology by fusion of an additional transmembrane segment. The simplicity of the mechanism of coupling ion and substrate transport and the few requirements for substrate recognition provide the robustness necessary to tolerate such a unique and unprecedented ambiguity in the interaction of the subunits and in the dimer topology relative to the membrane. The results suggest that the small multidrug transporters are at an evolutionary junction and provide a model for the evolution of structure of transport proteins.


Assuntos
Antiporters/genética , Proteínas de Escherichia coli/genética , Evolução Molecular , Proteínas de Membrana Transportadoras/genética , Sequências Repetitivas de Aminoácidos , Sequência de Aminoácidos , Antiporters/química , Dimerização , Proteínas de Escherichia coli/química , Proteínas de Membrana Transportadoras/química , Dados de Sequência Molecular , Conformação Proteica
15.
Biochim Biophys Acta ; 1794(5): 748-62, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19167526

RESUMO

EmrE is a small (110 residues) SMR transporter from Escherichia coli that extrudes positively charged aromatic drugs in exchange for two protons, thus rendering bacteria resistant to a variety of toxic compounds. Due to its size, stability and retention of its function upon solubilization in detergent, EmrE provides a unique experimental paradigm for the biochemical and biophysical studies of membrane based ion-coupled transporters. In addition, EmrE has been in center stage in the past two years because it provides also a paradigm for the study of the evolution of membrane proteins. Controversy around this topic is still going on and some novel concepts are surfacing that may contribute to our understanding of evolution of topology of membrane proteins. Furthermore, based on the findings that the cell multidrug transporters interact functionally we introduce the concept of a cell Resistosome.


Assuntos
Antiporters/genética , Antiporters/fisiologia , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/fisiologia , Evolução Molecular , Ácido Glutâmico/fisiologia , Glicina , Proteínas de Membrana Transportadoras/fisiologia , Multimerização Proteica , Estrutura Terciária de Proteína , Triptofano/fisiologia
16.
Protein Expr Purif ; 73(2): 152-60, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20566324

RESUMO

Neurotransmitter transporters play essential roles in the process of neurotransmission. Vesicular neurotransmitter transporters mediate storage inside secretory vesicles in a process that involves the exchange of lumenal H(+) for cytoplasmic transmitter. Retrieval of the neurotransmitter from the synaptic cleft catalyzed by sodium-coupled transporters is critical for the termination of the synaptic actions of the released neurotransmitter. Our current understanding of the mechanism of these transporters is based on functional and biochemical characterization but is lacking high-resolution structural information. Very few structures of membrane transport systems from mammalian origin have been solved to atomic resolution, mainly because of the difficulty in obtaining large amounts of purified protein. Development of high yield heterologous expression systems suitable for mammalian neurotransmitter transporters is essential to enable the production of purified protein for structural studies. Such a system makes possible also the production of mutants that can be used in biochemical and biophysical studies. We describe here a screen for the expression of the vesicular monoamine transporter 2 (VMAT2) in cell-free and baculovirus expression systems and discuss the expression of VMAT2 in other systems as well (bacterial, yeast and mammalian cell lines). After screening and optimization, we achieved high yield (2-2.5 mg/l) expression of functional VMAT2 in insect cells. The system was also used for the expression of three additional plasma membrane neurotransmitter transporters. All were functional and expressed to high levels. Our results demonstrate the advantages of the baculovirus expression system for the expression of mammalian neurotransmitter transporters in a functional state.


Assuntos
Proteínas de Transporte de Neurotransmissores/metabolismo , Animais , Baculoviridae/genética , Transporte Biológico , Sistema Livre de Células , Células Cultivadas , Técnica Direta de Fluorescência para Anticorpo , Vetores Genéticos , Imuno-Histoquímica , Proteínas de Membrana Transportadoras/metabolismo , Neurotransmissores/metabolismo , Proteínas de Transporte de Neurotransmissores/química , Spodoptera/citologia , Spodoptera/metabolismo , Transmissão Sináptica/fisiologia , Proteínas Vesiculares de Transporte de Monoamina/isolamento & purificação , Proteínas Vesiculares de Transporte de Monoamina/metabolismo
17.
Proc Natl Acad Sci U S A ; 104(46): 17989-94, 2007 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-17984053

RESUMO

EmrE is an Escherichia coli H(+)-coupled multidrug transporter that provides a unique experimental paradigm because of its small size and stability, and because its activity can be studied in detergent solution. In this work, we report a study of the transient kinetics of substrate binding and substrate-induced proton release in EmrE. For this purpose, we measured transient changes in the tryptophan fluorescence upon substrate binding and the rates of substrate-induced proton release. The fluorescence of the essential and fully conserved Trp residue at position 63 is sensitive to the occupancy of the binding site with either protons or substrate. The maximal rate of binding to detergent-solubilized EmrE of TPP(+), a high-affinity substrate, is 2 x 10(7) M(-1).s(-1), a rate typical of diffusion-limited reactions. Rate measurements with medium- and low-affinity substrates imply that the affinity is determined mainly by the k(off) of the substrate. The rates of substrate binding and substrate-induced release of protons are faster at basic pHs and slower at lower pHs. These findings imply that the substrate-binding rates are determined by the generation of the species capable of binding; this is controlled by the high affinity to protons of the glutamate at position 14, because an Asp replacement with a lower pK is faster at the same pHs.


Assuntos
Antiporters/metabolismo , Proteínas de Escherichia coli/metabolismo , Aminoácidos/metabolismo , Antiporters/química , Sítios de Ligação , Proteínas de Escherichia coli/química , Concentração de Íons de Hidrogênio , Cinética , Ligação Proteica , Prótons , Espectrometria de Fluorescência
18.
Sci Rep ; 10(1): 9954, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32561799

RESUMO

Awareness of the problem of antimicrobial resistance (AMR) has escalated, and drug-resistant infections are named among the most urgent issues facing clinicians today. Bacteria can acquire resistance to antibiotics by a variety of mechanisms that, at times, involve changes in their metabolic status, thus altering diverse biochemical reactions, many of them pH-dependent. In this work, we found that modulation of the cytoplasmic pH (pHi) of Escherichia coli provides a thus far unexplored strategy to support resistance. We show here that the acidification of the cytoplasmic pH is a previously unrecognized consequence of the activation of the marRAB operon. The acidification itself contributes to the full implementation of the resistance phenotype. We measured the pHi of two resistant strains, developed in our laboratory, that carry mutations in marR that activate the marRAB operon. The pHi of both strains is lower than that of the wild type strain. Inactivation of the marRAB response in both strains weakens resistance, and pHi increases back to wild type levels. Likewise, we showed that exposure of wild type cells to weak acids that caused acidification of the cytoplasm induced a resistant phenotype, independent of the marRAB response. We speculate that the decrease of the cytoplasmic pH brought about by activation of the marRAB response provides a signaling mechanism that modifies metabolic pathways and serves to cope with stress and to lower metabolic costs.


Assuntos
Citoplasma/metabolismo , Farmacorresistência Bacteriana , Estresse Fisiológico , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Escherichia coli , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Concentração de Íons de Hidrogênio , Mutação , Óperon , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
19.
PLoS One ; 14(6): e0218828, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31251753

RESUMO

Multidrug Transporters (MDTs) are major contributors to the acquisition and maintenance of Antimicrobial Resistance (AMR), a growing public health threat of broad concern. Despite the large number of MDTs, the overwhelming majority of the studies performed thus far in Gram-negative bacteria emphasize the supremacy of the AcrAB-TolC complex. To unveil the potential role of other MDTs we studied the behavior of a null AcrB Escherichia coli strain when challenged with chloramphenicol, a bacteriostatic antibiotic. We found that such a strain developed an extremely high-level of resistance to chloramphenicol, cross resistance to quinolones and erythromycin and displayed high levels of expression of the single component MFS transporter MdfA and multiple TolC-dependent transporters. The results suggest that the high versatility of the whole ensemble of transporters, the bacterial Effluxome, is an essential part of a strategy of survival in everchanging, at times noxious, environments. The concept of a functional Effluxome presents an alternative to the existing paradigms in the field and provides novel targets for the search for inhibitors of transporters as adjuvants of existing antibiotics.


Assuntos
Antibacterianos/farmacologia , Cloranfenicol/farmacologia , Proteínas de Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas da Membrana Bacteriana Externa/genética , Farmacorresistência Bacteriana Múltipla , Eritromicina/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Deleção de Genes , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Proteínas de Membrana Transportadoras/genética , Quinolonas/farmacologia , Esporos Bacterianos
20.
Biochim Biophys Acta ; 1768(12): 3036-43, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17976529

RESUMO

We study the uniformly 13C,15N isotopically enriched Escherichia coli multidrug resistance transporter EmrE using MAS solid-state NMR. Solid-state NMR can provide complementary structural information as the method allows studying membrane proteins in their native environment as no detergent is required for reconstitution. We compare the spectra obtained from wildtype EmrE to those obtained from the mutant EmrE-E14C. To resolve the critical amino acid E14, glutamic/aspartic acid selective experiments are carried out. These experiments allow to assign the chemical shift of the carboxylic carbon of E14. In addition, spectra are analyzed which are obtained in the presence and absence of the ligand TPP+.


Assuntos
Antiporters/química , Proteínas de Escherichia coli/química , Espectroscopia de Ressonância Magnética/métodos , Antiporters/ultraestrutura , Isótopos de Carbono , Proteínas de Escherichia coli/ultraestrutura , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Microscopia Eletrônica , Mutação , Isótopos de Nitrogênio , Oniocompostos/metabolismo , Compostos Organofosforados/metabolismo , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA