Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 153
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
N Engl J Med ; 388(2): 128-141, 2023 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-36516086

RESUMO

BACKGROUND: The late-onset cerebellar ataxias (LOCAs) have largely resisted molecular diagnosis. METHODS: We sequenced the genomes of six persons with autosomal dominant LOCA who were members of three French Canadian families and identified a candidate pathogenic repeat expansion. We then tested for association between the repeat expansion and disease in two independent case-control series - one French Canadian (66 patients and 209 controls) and the other German (228 patients and 199 controls). We also genotyped the repeat in 20 Australian and 31 Indian index patients. We assayed gene and protein expression in two postmortem cerebellum specimens and two induced pluripotent stem-cell (iPSC)-derived motor-neuron cell lines. RESULTS: In the six French Canadian patients, we identified a GAA repeat expansion deep in the first intron of FGF14, which encodes fibroblast growth factor 14. Cosegregation of the repeat expansion with disease in the families supported a pathogenic threshold of at least 250 GAA repeats ([GAA]≥250). There was significant association between FGF14 (GAA)≥250 expansions and LOCA in the French Canadian series (odds ratio, 105.60; 95% confidence interval [CI], 31.09 to 334.20; P<0.001) and in the German series (odds ratio, 8.76; 95% CI, 3.45 to 20.84; P<0.001). The repeat expansion was present in 61%, 18%, 15%, and 10% of French Canadian, German, Australian, and Indian index patients, respectively. In total, we identified 128 patients with LOCA who carried an FGF14 (GAA)≥250 expansion. Postmortem cerebellum specimens and iPSC-derived motor neurons from patients showed reduced expression of FGF14 RNA and protein. CONCLUSIONS: A dominantly inherited deep intronic GAA repeat expansion in FGF14 was found to be associated with LOCA. (Funded by Fondation Groupe Monaco and others.).


Assuntos
Ataxia Cerebelar , Expansão das Repetições de DNA , Íntrons , Humanos , Austrália , Canadá , Ataxia Cerebelar/genética , Ataxia Cerebelar/patologia , Ataxia de Friedreich/genética , Ataxia de Friedreich/patologia , Íntrons/genética , Expansão das Repetições de DNA/genética
2.
RNA ; 29(4): 446-454, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36669889

RESUMO

Splice-modulating antisense oligonucleotides (ASOs) offer treatment options for rare neurological diseases, including those with very rare mutations, where patient-specific, individualized ASOs have to be developed. Inspired by the development of milasen, the 1 Mutation 1 Medicine (1M1M) and Dutch Center for RNA Therapeutics (DCRT) aim to develop patient-specific ASOs and treat eligible patients within Europe and the Netherlands, respectively. Treatment will be provided under a named patient setting. Our initiatives benefited from regulatory advice from the European Medicines Agency (EMA) with regard to preclinical proof-of-concept studies, safety studies, compounding and measuring benefit and safety in treated patients. We here outline the most important considerations from these interactions and how we implemented this advice into our plan to develop and treat eligible patients within Europe.


Assuntos
Encefalopatias , Oligonucleotídeos , Humanos , Oligonucleotídeos/genética , Oligonucleotídeos/uso terapêutico , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/uso terapêutico , Encéfalo , Europa (Continente) , Encefalopatias/tratamento farmacológico
3.
Mov Disord ; 39(9): 1544-1555, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38847438

RESUMO

BACKGROUND: With treatment trials on the horizon, this study aimed to identify candidate digital-motor gait outcomes for autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS), capturable by wearable sensors with multicenter validity, and ideally also ecological validity during free walking outside laboratory settings. METHODS: Cross-sectional multicenter study (four centers), with gait assessments in 36 subjects (18 ARSACS patients; 18 controls) using three body-worn sensors (Opal, APDM) in laboratory settings and free walking in public spaces. Sensor gait measures were analyzed for discriminative validity from controls, and for convergent (ie, clinical and patient relevance) validity by correlations with SPRSmobility (primary outcome) and Scale for the Assessment and Rating of Ataxia (SARA), Spastic Paraplegia Rating Scale (SPRS), and activities of daily living subscore of the Friedreich Ataxia Rating Scale (FARS-ADL) (exploratory outcomes). RESULTS: Of 30 hypothesis-based digital gait measures, 14 measures discriminated ARSACS patients from controls with large effect sizes (|Cliff's δ| > 0.8) in laboratory settings, with strongest discrimination by measures of spatiotemporal variability Lateral Step Deviation (δ = 0.98), SPcmp (δ = 0.94), and Swing CV (δ = 0.93). Large correlations with the SPRSmobility were observed for Swing CV (Spearman's ρ = 0.84), Speed (ρ = -0.63), and Harmonic Ratio V (ρ = -0.62). During supervised free walking in a public space, 11/30 gait measures discriminated ARSACS from controls with large effect sizes. Large correlations with SPRSmobility were here observed for Swing CV (ρ = 0.78) and Speed (ρ = -0.69), without reductions in effect sizes compared with laboratory settings. CONCLUSIONS: We identified a promising set of digital-motor candidate gait outcomes for ARSACS, applicable in multicenter settings, correlating with patient-relevant health aspects, and with high validity also outside laboratory settings, thus simulating real-life walking with higher ecological validity. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Espasticidade Muscular , Ataxias Espinocerebelares , Humanos , Masculino , Feminino , Ataxias Espinocerebelares/fisiopatologia , Ataxias Espinocerebelares/diagnóstico , Ataxias Espinocerebelares/congênito , Adulto , Estudos Transversais , Espasticidade Muscular/fisiopatologia , Espasticidade Muscular/diagnóstico , Pessoa de Meia-Idade , Adulto Jovem , Marcha/fisiologia , Transtornos Neurológicos da Marcha/fisiopatologia , Transtornos Neurológicos da Marcha/diagnóstico , Transtornos Neurológicos da Marcha/etiologia , Adolescente , Atividades Cotidianas , Caminhada/fisiologia , Dispositivos Eletrônicos Vestíveis
4.
Mov Disord ; 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39314081

RESUMO

BACKGROUND: Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is a common recessive ataxia that is still underdiagnosed worldwide. An easily accessible diagnostic biomarker might help to diagnostically confirm patients presenting SACS variants of unknown significance (VUS) or atypical phenotypes. OBJECTIVES: To detect sacsin in peripheral blood mononuclear cells (PBMCs) and to validate its diagnostic biomarker quality to discriminate biallelic SACS patients (including patients with VUS and/or atypical phenotypes) against healthy controls, non-ARSACS spastic ataxia patients, and heterozygous SACS carriers. METHODS: Sacsin protein levels in PBMCs were assessed in patients versus controls and validated in skin-derived fibroblasts. RESULTS: Patients with biallelic SACS variants - including patients with VUS and/or atypical phenotypes - showed loss of sacsin in PBMCs, with discriminative performance against healthy, heterozygous, and non-ARSACS controls. This included all investigated SACS missense variants. Also, C-terminal variants escaping nonsense-mediated decay, while not differing from controls in expression level, showed lower molecular weight in this assay. CONCLUSIONS: Assessing sacsin levels using PBMCs offers an easy, peripherally accessible diagnostic biomarker for ARSACS, with PBMCs being much less invasive and easier to handle than fibroblasts. Additionally, this might be a potential target-engagement blood biomarker for sacsin-increasing therapies. © 2024 International Parkinson and Movement Disorder Society.

5.
Mov Disord ; 39(8): 1343-1351, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38847051

RESUMO

BACKGROUND: Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) and hereditary spastic paraplegia type 7 (SPG7) represent the most common genotypes of spastic ataxia (SPAX). To date, their magnetic resonance imaging (MRI) features have only been described qualitatively, and a pure neuroradiological differential diagnosis between these two conditions is difficult to achieve. OBJECTIVES: To test the performance of MRI measures to discriminate between ARSACS and SPG7 (as an index of common SPAX disease). METHODS: In this prospective multicenter study, 3D-T1-weighted images of 59 ARSACS (35.4 ± 10.3 years, M/F = 33/26) and 78 SPG7 (54.8 ± 10.3 years, M/F = 51/27) patients of the PROSPAX Consortium were analyzed, together with 30 controls (45.9 ± 16.9 years, M/F = 15/15). Different linear and surface measures were evaluated. A receiver operating characteristic analysis was performed, calculating area under the curve (AUC) and corresponding diagnostic accuracy parameters. RESULTS: The pons area proved to be the only metric increased exclusively in ARSACS patients (P = 0.02). Other different measures were reduced in ARSACS and SPG7 compared with controls (all with P ≤ 0.005). A cut-off value equal to 1.67 of the pons-to-superior vermis area ratio proved to have the highest AUC (0.98, diagnostic accuracy 93%, sensitivity 97%) in discriminating between ARSACS and SPG7. CONCLUSIONS: Evaluation of the pons-to-superior vermis area ratio can discriminate ARSACS from other SPAX patients, as exemplified here by SPG7. Hence, we hereby propose this ratio as the Magnetic Resonance Index for the Assessment and Recognition of patients harboring SACS mutations (MRI-ARSACS), a novel diagnostic tool able to identify ARSACS patients and useful for discriminating ARSACS from other SPAX patients undergoing MRI. © 2024 International Parkinson and Movement Disorder Society.


Assuntos
Imageamento por Ressonância Magnética , Espasticidade Muscular , Paraplegia Espástica Hereditária , Ataxias Espinocerebelares , Humanos , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Imageamento por Ressonância Magnética/métodos , Ataxias Espinocerebelares/diagnóstico por imagem , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/congênito , Espasticidade Muscular/diagnóstico por imagem , Paraplegia Espástica Hereditária/genética , Paraplegia Espástica Hereditária/diagnóstico por imagem , Paraplegia Espástica Hereditária/diagnóstico , Adulto Jovem , Idoso , Estudos Prospectivos , Encéfalo/diagnóstico por imagem , Encéfalo/patologia
6.
Eur J Neurol ; 31(8): e16367, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38859620

RESUMO

BACKGROUND AND PURPOSE: Hereditary spastic paraplegias (HSPs) comprise a group of inherited neurodegenerative disorders characterized by progressive spasticity and weakness. Botulinum toxin has been approved for lower limb spasticity following stroke and cerebral palsy, but its effects in HSPs remain underexplored. We aimed to characterize the effects of botulinum toxin on clinical, gait, and patient-reported outcomes in HSP patients and explore the potential of mobile digital gait analysis to monitor treatment effects and predict treatment response. METHODS: We conducted a prospective, observational, multicenter study involving ambulatory HSP patients treated with botulinum toxin tailored to individual goals. Comparing data at baseline, after 1 month, and after 3 months, treatment response was assessed using clinical parameters, goal attainment scaling, and mobile digital gait analysis. Machine learning algorithms were used for predicting individual goal attainment based on baseline parameters. RESULTS: A total of 56 patients were enrolled. Despite the heterogeneity of treatment goals and targeted muscles, botulinum toxin led to a significant improvement in specific clinical parameters and an improvement in specific gait characteristics, peaking at the 1-month and declining by the 3-month follow-up. Significant correlations were identified between gait parameters and clinical scores. With a mean balanced accuracy of 66%, machine learning algorithms identified important denominators to predict treatment response. CONCLUSIONS: Our study provides evidence supporting the beneficial effects of botulinum toxin in HSP when applied according to individual treatment goals. The use of mobile digital gait analysis and machine learning represents a novel approach for monitoring treatment effects and predicting treatment response.


Assuntos
Análise da Marcha , Paraplegia Espástica Hereditária , Humanos , Masculino , Feminino , Paraplegia Espástica Hereditária/tratamento farmacológico , Adulto , Pessoa de Meia-Idade , Análise da Marcha/métodos , Estudos Prospectivos , Fármacos Neuromusculares/farmacologia , Fármacos Neuromusculares/administração & dosagem , Fármacos Neuromusculares/uso terapêutico , Resultado do Tratamento , Toxinas Botulínicas Tipo A/uso terapêutico , Toxinas Botulínicas Tipo A/farmacologia , Adulto Jovem , Idoso , Toxinas Botulínicas/uso terapêutico
7.
Brain ; 146(3): 1093-1102, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35472722

RESUMO

This cohort study aimed to characterize the prodromal phase of hereditary spastic paraplegia type 4 (SPG4) using biomarkers and clinical signs and symptoms that develop before manifest gait abnormalities. Fifty-six first-degree relatives at risk of developing SPG4 underwent blinded genotyping and standardized phenotyping, including the Spastic Paraplegia Rating Scale (SPRS), complicating symptoms, non-motor affection, Three-Minute Walk, and neurophysiological assessment. Automated MR image analysis was used to compare volumetric properties. CSF of 33 probands was analysed for neurofilament light chain (NfL), tau, and amyloid-ß (Aß). Thirty participants turned out to be SPAST mutation carriers, whereas 26 did not inherit a SPAST mutation. Increased reflexes, ankle clonus, and hip abduction weakness were more frequent in prodromal mutation carriers but were also observed in non-mutation carriers. Only Babinski's sign differentiated reliably between the two groups. Timed walk and non-motor symptoms did not differ between groups. Whereas most mutation carriers had total SPRS scores of 2 points or more, only two non-mutation carriers reached more than 1 point. Motor evoked potentials revealed no differences between mutation and non-mutation carriers. We found NfL but not tau or Aß to rise in CSF of mutation carriers when approaching the time point of predicted disease manifestation. Serum NfL did not differ between groups. Volumetric MRI analyses did not reveal group differences apart from a smaller cingulate gyrus in mutation carriers. This study depicts subtle clinical signs which develop before gait abnormalities in SPG4. Long-term follow-up is needed to study the evolution of SPG4 in the prodromal stage and conversion into manifest disease. NfL in CSF is a promising fluid biomarker that may indicate disease activity in prodromal SPG4 but needs further evaluation in longitudinal studies.


Assuntos
Paraplegia Espástica Hereditária , Humanos , Paraplegia Espástica Hereditária/genética , Estudos de Coortes , Paraplegia/genética , Mutação/genética , Peptídeos beta-Amiloides/genética , Espastina/genética
8.
Brain ; 146(5): 2003-2015, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-36315648

RESUMO

In the field of hereditary spastic paraplegia (HSP), progress in molecular diagnostics needs to be translated into robust phenotyping studies to understand genetic and phenotypic heterogeneity and to support interventional trials. ZFYVE26-associated hereditary spastic paraplegia (HSP-ZFYVE26, SPG15) is a rare, early-onset complex HSP, characterized by progressive spasticity and a variety of other neurological symptoms. While prior reports, often in populations with high rates of consanguinity, have established a general phenotype, there is a lack of systematic investigations and a limited understanding of age-dependent manifestation of symptoms. Here we delineate the clinical, neuroimaging and molecular features of 44 individuals from 36 families, the largest cohort assembled to date. Median age at last follow-up was 23.8 years covering a wide age range (11-61 years). While symptom onset often occurred in early childhood [median: 24 months, interquartile range (IQR) = 24], a molecular diagnosis was reached at a median age of 18.8 years (IQR = 8), indicating significant diagnostic delay. We demonstrate that most patients present with motor and/or speech delay or learning disabilities. Importantly, these developmental symptoms preceded the onset of motor symptoms by several years. Progressive spasticity in the lower extremities, the hallmark feature of HSP-ZFYVE26, typically presents in adolescence and involves the distal lower limbs before progressing proximally. Spasticity in the upper extremities was seen in 64%. We found a high prevalence of extrapyramidal movement disorders including cerebellar ataxia (64%) and dystonia (11%). Parkinsonism (16%) was present in a subset and showed no sustained response to levodopa. Cognitive decline and neurogenic bladder dysfunction progressed over time in most patients. A systematic analysis of brain MRI features revealed a common diagnostic signature consisting of thinning of the anterior corpus callosum, signal changes of the anterior forceps and non-specific cortical and cerebellar atrophy. The molecular spectrum included 45 distinct variants, distributed across the protein structure without mutational hotspots. Spastic Paraplegia Rating Scale scores, SPATAX Disability Scores and the Four Stage Functional Mobility Score showed moderate strength in representing the proportion of variation between disease duration and motor dysfunction. Plasma neurofilament light chain levels were significantly elevated in all patients (Mann-Whitney U-test, P < 0.0001) and were correlated inversely with age (Spearman's rank correlation coefficient r = -0.65, P = 0.01). In summary, our systematic cross-sectional analysis of HSP-ZFYVE26 patients across a wide age-range, delineates core clinical, neuroimaging and molecular features and identifies markers of disease severity. These results raise awareness to this rare disease, facilitate an early diagnosis and create clinical trial readiness.


Assuntos
Paraplegia Espástica Hereditária , Humanos , Pré-Escolar , Paraplegia Espástica Hereditária/genética , Estudos Transversais , Diagnóstico Tardio , Proteínas/genética , Mutação
9.
Eur J Neurol ; 30(8): 2442-2452, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37154411

RESUMO

BACKGROUND AND OBJECTIVES: Hereditary spastic paraplegias (HSPs) are heterogenous genetic disorders. While peripheral nerve involvement is frequent in spastic paraplegia 7 (SPG7), the evidence of peripheral nerve involvement in SPG4 is more controversial. We aimed to characterize lower extremity peripheral nerve involvement in SPG4 and SPG7 by quantitative magnetic resonance neurography (MRN). METHODS: Twenty-six HSP patients carrying either the SPG4 or SPG7 mutation and 26 age-/sex-matched healthy controls prospectively underwent high-resolution MRN with large coverage of the sciatic and tibial nerve. Dual-echo turbo-spin-echo sequences with spectral fat-saturation were utilized for T2-relaxometry and morphometric quantification, while two gradient-echo sequences with and without an off-resonance saturation rapid frequency pulse were applied for magnetization transfer contrast (MTC) imaging. HSP patients additionally underwent detailed neurologic and electroneurographic assessments. RESULTS: All microstructural (proton spin density [ρ], T2-relaxation time, magnetization transfer ratio) and morphometric (cross-sectional area) quantitative MRN markers were decreased in SPG4 and SPG7 indicating chronic axonopathy. ρ was superior in differentiating subgroups and identifying subclinical nerve damage in SPG4 and SPG7 without neurophysiologic signs of polyneuropathy. MRN markers correlated well with clinical scores and electroneurographic results. CONCLUSIONS: MRN characterizes peripheral nerve involvement in SPG4 and SPG7 as a neuropathy with predominant axonal loss. Evidence of peripheral nerve involvement in SPG4 and SPG7, even without electroneurographically manifest polyneuropathy, and the good correlation of MRN markers with clinical measures of disease progression, challenge the traditional view of the existence of HSPs with isolated pyramidal signs and suggest MRN markers as potential progression biomarkers in HSP.


Assuntos
Doenças do Sistema Nervoso Periférico , Polineuropatias , Paraplegia Espástica Hereditária , Humanos , Paraplegia Espástica Hereditária/diagnóstico por imagem , Paraplegia Espástica Hereditária/genética , Nervos Periféricos/diagnóstico por imagem , Nervos Periféricos/patologia , Doenças do Sistema Nervoso Periférico/diagnóstico por imagem , Doenças do Sistema Nervoso Periférico/patologia , Polineuropatias/patologia , Espectroscopia de Ressonância Magnética , Imageamento por Ressonância Magnética/métodos
10.
Am J Hum Genet ; 104(4): 767-773, 2019 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-30929741

RESUMO

The diagnostic gap for rare neurodegenerative diseases is still considerable, despite continuous advances in gene identification. Many novel Mendelian genes have only been identified in a few families worldwide. Here we report the identification of an autosomal-dominant gene for hereditary spastic paraplegia (HSP) in 10 families that are of diverse geographic origin and whose affected members all carry unique truncating changes in a circumscript region of UBAP1 (ubiquitin-associated protein 1). HSP is a neurodegenerative disease characterized by progressive lower-limb spasticity and weakness, as well as frequent bladder dysfunction. At least 40% of affected persons are currently undiagnosed after exome sequencing. We identified pathological truncating variants in UBAP1 in affected persons from Iran, USA, Germany, Canada, Spain, and Bulgarian Roma. The genetic support ranges from linkage in the largest family (LOD = 8.3) to three confirmed de novo mutations. We show that mRNA in the fibroblasts of affected individuals escapes nonsense-mediated decay and thus leads to the expression of truncated proteins; in addition, concentrations of the full-length protein are reduced in comparison to those in controls. This suggests either a dominant-negative effect or haploinsufficiency. UBAP1 links endosomal trafficking to the ubiquitination machinery pathways that have been previously implicated in HSPs, and UBAP1 provides a bridge toward a more unified pathophysiology.


Assuntos
Proteínas de Transporte/genética , Mutação , Paraplegia Espástica Hereditária/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Criança , Pré-Escolar , Bases de Dados Factuais , Modelos Animais de Doenças , Endossomos/metabolismo , Saúde da Família , Feminino , Fibroblastos/metabolismo , Genes Dominantes , Ligação Genética , Predisposição Genética para Doença , Genômica , Células HEK293 , Haploinsuficiência , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem , Isoformas de Proteínas , Adulto Jovem , Peixe-Zebra
11.
Genet Med ; 24(12): 2487-2500, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36136088

RESUMO

PURPOSE: The chaperone protein BiP is the master regulator of the unfolded protein response in the endoplasmic reticulum. BiP chaperone activity is regulated by the post-translational modification AMPylation, exclusively provided by FICD. We investigated whether FICD variants identified in patients with motor neuron disease could interfere with BiP activity regulation. METHODS: Exome sequencing was performed to identify causative pathogenic variants associated with motor neuron diseases. Functional studies were conducted on fibroblasts from patients to explore the molecular mechanism of the disease. RESULTS: We identified biallelic variants in FICD causing a neurodegenerative disease of upper and lower motor neurons. Affected individuals harbor a specific missense variant, Arg374His, positioned in the catalytic motif of the enzyme and important for adenosine triphosphate binding. The mutated residue abolishes intramolecular interaction with the regulatory residue Glu234, essential to inhibit AMPylation and to promote de-AMPylation by FICD. Consequently, fibroblasts from patients with FICD variants have abnormally increased levels of AMPylated and thus inactivated BiP. CONCLUSION: Loss of BiP chaperone activity in patients likely results in a chronic impairment of the protein quality control system in the endoplasmic reticulum. These findings will guide the development of therapeutic strategies for motoneuron and related diseases linked to proteotoxic stress.


Assuntos
Doença dos Neurônios Motores , Doenças Neurodegenerativas , Humanos , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/metabolismo , Chaperona BiP do Retículo Endoplasmático , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Doença dos Neurônios Motores/genética , Doença dos Neurônios Motores/metabolismo
12.
Mov Disord ; 37(5): 1047-1058, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35067979

RESUMO

BACKGROUND: Clinical and regulatory acceptance of upcoming molecular treatments in degenerative ataxias might greatly benefit from ecologically valid endpoints that capture change in ataxia severity in patients' real life. OBJECTIVES: This longitudinal study aimed to unravel quantitative motor biomarkers in degenerative ataxias in real-life turning movements that are sensitive for changes both longitudinally and at the preataxic stage. METHODS: Combined cross-sectional (n = 30) and longitudinal (n = 14, 1-year interval) observational study in degenerative cerebellar disease (including eight preataxic mutation carriers) compared to 23 healthy controls. Turning movements were assessed by three body-worn inertial sensors in three conditions: (1) instructed laboratory assessment, (2) supervised free walking, and (3) unsupervised real-life movements. RESULTS: Measures that quantified dynamic balance during turning-lateral velocity change (LVC) and outward acceleration-but not general turning measures such as speed, allowed differentiating ataxic against healthy subjects in real life (effect size δ = 0.68), with LVC also differentiating preataxic against healthy subjects (δ = 0.53). LVC was highly correlated with clinical ataxia severity (scale for the assessment and rating of ataxia [SARA] score, effect size ρ = 0.79) and patient reported balance confidence (activity-specific balance confidence scale [ABC] score, ρ = 0.66). Moreover, LVC in real life-but not general turning measures or the SARA score-allowed detecting significant longitudinal change in 1-year follow-up with high effect size (rprb  = 0.66). CONCLUSIONS: Measures of turning allow capturing specific changes of dynamic balance in degenerative ataxia in real life, with high sensitivity to longitudinal differences in ataxia severity and to the preataxic stage. They thus present promising ecologically valid motor biomarkers, even in the highly treatment-relevant early stages of degenerative cerebellar disease. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Ataxia Cerebelar , Ataxias Espinocerebelares , Ataxia , Biomarcadores , Estudos Transversais , Humanos , Estudos Longitudinais , Ataxias Espinocerebelares/genética
13.
Mov Disord ; 37(12): 2417-2426, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36054444

RESUMO

BACKGROUND: In hereditary spastic paraplegia type 4 (SPG4), subclinical gait changes might occur years before patients realize gait disturbances. The prodromal phase of neurodegenerative disease is of particular interest to halt disease progression by future interventions before impairment has manifested. OBJECTIVE: The objective of this study was to identify specific movement abnormalities before the manifestation of gait impairment and quantify disease progression in the prodromal phase. METHODS: Seventy subjects participated in gait assessment, including 30 prodromal SPAST pathogenic variant carriers, 17 patients with mild-to-moderate manifest SPG4, and 23 healthy control subjects. An infrared-camera-based motion capture system assessed gait to analyze features such as range of motion and continuous angle trajectories. Those features were correlated with disease severity as assessed by the Spastic Paraplegia Rating Scale, neurofilament light chain as a fluid biomarker indicating neurodegeneration, and motor-evoked potentials. RESULTS: Compared with healthy control subjects, we found an altered gait pattern in prodromal pathogenic variant carriers during the swing phase in the segmental angle of the foot (Dunn's post hoc test, q = 3.1) and heel ground clearance (q = 2.8). Furthermore, range of motion of segmental angle was reduced for the foot (q = 3.3). These changes occurred in prodromal pathogenic variant carriers without quantified leg spasticity in clinical examination. Gait features correlated with neurofilament light chain levels, central motor conduction times of motor-evoked potentials, and Spastic Paraplegia Rating Scale score. CONCLUSIONS: Gait analysis can quantify changes in prodromal and mild-to-moderate manifest SPG4 patients. Thus, gait features constitute promising motor biomarkers characterizing the subclinical progression of spastic gait and might help to evaluate interventions in early disease stages. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Doenças Neurodegenerativas , Paraplegia Espástica Hereditária , Humanos , Paraplegia Espástica Hereditária/diagnóstico , Paraplegia , Marcha/fisiologia , Progressão da Doença , Espastina
14.
Mov Disord ; 37(12): 2440-2446, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36103453

RESUMO

BACKGROUND: Familial hereditary spastic paraplegia (HSP)-SPAST (SPG4) typically presents with a pure HSP phenotype. OBJECTIVE: The aim of this study was to delineate the genotypic and phenotypic spectrum of children with de novo HSP-SPAST. METHODS: This study used a systematic cross-sectional analysis of clinical and molecular features. RESULTS: We report the clinical and molecular spectrum of 40 patients with heterozygous pathogenic de novo variants in SPAST (age range: 2.2-27.7 years). We identified 19 unique variants (16/40 carried the same recurrent variant, p.Arg499His). Symptom onset was in early childhood (median: 11.0 months, interquartile range: 6.0 months) with significant motor and speech delay, followed by progressive ascending spasticity, dystonia, neurogenic bladder dysfunction, gastrointestinal dysmotility, and epilepsy. The mean Spastic Paraplegia Rating Scale score was 32.8 ± 9.7 (standard deviation). CONCLUSIONS: These results confirm that de novo variants in SPAST lead to a severe and complex form of HSP that differs from classic familial pure HSP-SPAST. Clinicians should be aware of this syndrome in the differential diagnosis for cerebral palsy. © 2022 International Parkinson and Movement Disorder Society.


Assuntos
Paraplegia Espástica Hereditária , Pré-Escolar , Humanos , Estudos Transversais , Espasticidade Muscular , Mutação , Fenótipo , Paraplegia Espástica Hereditária/genética , Paraplegia Espástica Hereditária/diagnóstico , Espastina/genética , Criança , Adolescente , Adulto Jovem , Adulto
15.
Mov Disord ; 37(6): 1175-1186, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35150594

RESUMO

BACKGROUND: Pathogenic variants in SPTAN1 have been linked to a remarkably broad phenotypical spectrum. Clinical presentations include epileptic syndromes, intellectual disability, and hereditary motor neuropathy. OBJECTIVES: We investigated the role of SPTAN1 variants in rare neurological disorders such as ataxia and spastic paraplegia. METHODS: We screened 10,000 NGS datasets across two international consortia and one local database, indicative of the level of international collaboration currently required to identify genes causative for rare disease. We performed in silico modeling of the identified SPTAN1 variants. RESULTS: We describe 22 patients from 14 families with five novel SPTAN1 variants. Of six patients with cerebellar ataxia, four carry a de novo SPTAN1 variant and two show a sporadic inheritance. In this group, one variant (p.Lys2083del) is recurrent in four patients. Two patients have novel de novo missense mutations (p.Arg1098Cys, p.Arg1624Cys) associated with cerebellar ataxia, in one patient accompanied by intellectual disability and epilepsy. We furthermore report a recurrent missense mutation (p.Arg19Trp) in 15 patients with spastic paraplegia from seven families with a dominant inheritance pattern in four and a de novo origin in one case. One further patient carrying a de novo missense mutation (p.Gln2205Pro) has a complex spastic ataxic phenotype. Through protein modeling we show that mutated amino acids are located at crucial interlinking positions, interconnecting the three-helix bundle of a spectrin repeat. CONCLUSIONS: We show that SPTAN1 is a relevant candidate gene for ataxia and spastic paraplegia. We suggest that for the mutations identified in this study, disruption of the interlinking of spectrin helices could be a key feature of the pathomechanism. © 2022 International Parkinson and Movement Disorder Society.


Assuntos
Proteínas de Transporte , Ataxia Cerebelar , Deficiência Intelectual , Proteínas dos Microfilamentos , Paraplegia Espástica Hereditária , Proteínas de Transporte/genética , Ataxia Cerebelar/genética , Humanos , Deficiência Intelectual/genética , Proteínas dos Microfilamentos/genética , Mutação/genética , Paraplegia/genética , Linhagem , Fenótipo , Paraplegia Espástica Hereditária/genética , Espectrina/genética
16.
BMC Neurol ; 22(1): 115, 2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35331153

RESUMO

BACKGROUND: Hereditary spastic paraplegias (HSPs) are progressively debilitating neurodegenerative disorders that follow heterogenous patterns of Mendelian inheritance. Available epidemiological evidence provides limited incidence and prevalence data, especially at the genetic subtype level, preventing a realistic estimation of the true social burden of the disease. The objectives of this study were to (1) review the literature on epidemiology of HSPs; and (2) develop an epidemiological model of the prevalence of HSP, focusing on four common HSP genetic subtypes at the country and region-level. METHODS: A model was constructed estimating the incidence at birth, survival, and prevalence of four genetic subtypes of HSP based on the most appropriate published literature. The key model parameters were assessed by HSP clinical experts, who provided feedback on the validity of assumptions. A model was then finalized and validated through comparison of outputs against available evidence. The global, regional, and national prevalence and patient pool were calculated per geographic region and per genetic subtype. RESULTS: The HSP global prevalence was estimated to be 3.6 per 100,000 for all HSP forms, whilst the estimated global prevalence per genetic subtype was 0.90 (SPG4), 0.22 (SPG7), 0.34 (SPG11), and 0.13 (SPG15), respectively. This equates to an estimated 3365 (SPG4) and 872 (SPG11) symptomatic patients, respectively, in the USA. CONCLUSIONS: This is the first epidemiological model of HSP prevalence at the genetic subtype-level reported at multiple geographic levels. This study offers additional data to better capture the burden of illness due to mutations in common genes causing HSP, that can inform public health policy and healthcare service planning, especially in regions with higher estimated prevalence of HSP.


Assuntos
Paraplegia Espástica Hereditária , ATPases Associadas a Diversas Atividades Celulares/genética , Humanos , Incidência , Recém-Nascido , Metaloendopeptidases/genética , Mutação , Prevalência , Proteínas/genética , Paraplegia Espástica Hereditária/epidemiologia , Paraplegia Espástica Hereditária/genética
17.
Int J Mol Sci ; 23(21)2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36362248

RESUMO

In patients with slowly progressive spastic paraparesis, the differential diagnosis of primary progressive multiple sclerosis (PPMS) and hereditary spastic paraplegia (HSP) can be challenging. Serum neurofilament light chain (sNfL) and glial fibrillary acidic protein (sGFAP) are promising fluid biomarkers to support the diagnostic workup. Serum NfL is a marker of neuroaxonal decay sensitive to temporal changes, while elevated sGFAP levels may reflect astrocytal involvement in PPMS. We assessed sNfL and sGFAP levels in 25 patients with PPMS, 25 patients with SPG4 (the most common type of HSP) and 60 controls, using the highly sensitive single-molecule array (Simoa) platform. Patients were matched in age, sex, age at onset, disease duration and disease severity. Serum NfL levels were significantly increased in PPMS compared to SPG4 (p = 0.041, partial η² = 0.088), and there was a trend toward relatively higher sGFAP levels in PPMS (p = 0.097). However, due to overlapping biomarker values in both groups, we did not find sNfL and sGFAP to be useful as differential biomarkers in our cohort. The temporal dynamics indicate sNfL and sGFAP levels are most markedly elevated in PPMS in earlier disease stages, supporting their investigation in this group most in need of a diagnostic biomarker.


Assuntos
Esclerose Múltipla Crônica Progressiva , Esclerose Múltipla , Paraplegia Espástica Hereditária , Humanos , Proteína Glial Fibrilar Ácida , Filamentos Intermediários , Esclerose Múltipla/diagnóstico , Paraplegia Espástica Hereditária/diagnóstico , Proteínas de Neurofilamentos , Biomarcadores
18.
Ann Neurol ; 88(1): 18-32, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32219868

RESUMO

OBJECTIVE: Dominant optic atrophy (DOA) is the most common inherited optic neuropathy, with a prevalence of 1:12,000 to 1:25,000. OPA1 mutations are found in 70% of DOA patients, with a significant number remaining undiagnosed. METHODS: We screened 286 index cases presenting optic atrophy, negative for OPA1 mutations, by targeted next generation sequencing or whole exome sequencing. Pathogenicity and molecular mechanisms of the identified variants were studied in yeast and patient-derived fibroblasts. RESULTS: Twelve cases (4%) were found to carry novel variants in AFG3L2, a gene that has been associated with autosomal dominant spinocerebellar ataxia 28 (SCA28). Half of cases were familial with a dominant inheritance, whereas the others were sporadic, including de novo mutations. Biallelic mutations were found in 3 probands with severe syndromic optic neuropathy, acting as recessive or phenotype-modifier variants. All the DOA-associated AFG3L2 mutations were clustered in the ATPase domain, whereas SCA28-associated mutations mostly affect the proteolytic domain. The pathogenic role of DOA-associated AFG3L2 mutations was confirmed in yeast, unraveling a mechanism distinct from that of SCA28-associated AFG3L2 mutations. Patients' fibroblasts showed abnormal OPA1 processing, with accumulation of the fission-inducing short forms leading to mitochondrial network fragmentation, not observed in SCA28 patients' cells. INTERPRETATION: This study demonstrates that mutations in AFG3L2 are a relevant cause of optic neuropathy, broadening the spectrum of clinical manifestations and genetic mechanisms associated with AFG3L2 mutations, and underscores the pivotal role of OPA1 and its processing in the pathogenesis of DOA. ANN NEUROL 2020 ANN NEUROL 2020;88:18-32.


Assuntos
Proteases Dependentes de ATP/genética , ATPases Associadas a Diversas Atividades Celulares/genética , GTP Fosfo-Hidrolases/genética , Atrofia Óptica/genética , Doenças do Nervo Óptico/genética , Adolescente , Adulto , Idoso , Criança , Feminino , Testes Genéticos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Linhagem , Sequenciamento do Exoma , Adulto Jovem
19.
J Inherit Metab Dis ; 44(3): 777-786, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33089527

RESUMO

5,10-Methylenetetrahydrofolate reductase (MTHFR) deficiency usually presents as a severe neonatal disease. This study aimed to characterize natural history, biological and molecular data, and response to treatment of patients with late-onset MTHFR deficiency. The patients were identified through the European Network and Registry for Homocystinuria and Methylation Defects and the Adult group of the French Society for Inherited Metabolic Diseases; data were retrospectively colleted. To identify juvenile to adult-onset forms of the disease, we included patients with a diagnosis established after the age of 10 years. We included 14 patients (median age at diagnosis: 32 years; range: 11-54). At onset (median age: 20 years; range 9-38), they presented with walking difficulties (n = 8), cognitive decline (n = 3) and/or seizures (n = 3), sometimes associated with mild mental retardation (n = 6). During the disease course, symptoms were almost exclusively neurological with cognitive dysfunction (93%), gait disorders (86%), epilepsy (71%), psychiatric symptoms (57%), polyneuropathy (43%), and visual deficit (43%). Mean diagnostic delay was 14 years. Vascular events were observed in 28% and obesity in 36% of the patients. One patient remained asymptomatic at the age of 55 years. Upon treatment, median total homocysteine decreased (from 183 µmol/L, range 69-266, to 90 µmol/L, range 20-142) and symptoms improved (n = 9) or stabilized (n = 4). Missense pathogenic variants in the C-terminal regulatory domain of the protein were over-represented compared to early-onset cases. Residual MTHFR enzymatic activity in skin fibroblasts (n = 4) was rather high (17%-58%). This series of patients with late-onset MTHFR deficiency underlines the still unmet need of a prompt diagnosis of this treatable disease.


Assuntos
Homocistinúria/diagnóstico , Homocistinúria/patologia , Metilenotetra-Hidrofolato Redutase (NADPH2)/deficiência , Espasticidade Muscular/diagnóstico , Espasticidade Muscular/patologia , Adolescente , Adulto , Idade de Início , Criança , Diagnóstico Tardio , Epilepsia/diagnóstico , Epilepsia/patologia , Feminino , Humanos , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/patologia , Masculino , Pessoa de Meia-Idade , Transtornos Psicóticos/diagnóstico , Transtornos Psicóticos/patologia , Estudos Retrospectivos , Convulsões/diagnóstico , Convulsões/patologia , Adulto Jovem
20.
Genet Med ; 22(12): 2114-2119, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32741968

RESUMO

PURPOSE: Inherited axonopathies (IA) are rare, clinically and genetically heterogeneous diseases that lead to length-dependent degeneration of the long axons in central (hereditary spastic paraplegia [HSP]) and peripheral (Charcot-Marie-Tooth type 2 [CMT2]) nervous systems. Mendelian high-penetrance alleles in over 100 different genes have been shown to cause IA; however, about 50% of IA cases do not receive a genetic diagnosis. A more comprehensive spectrum of causative genes and alleles is warranted, including causative and risk alleles, as well as oligogenic multilocus inheritance. METHODS: Through international collaboration, IA exome studies are beginning to be sufficiently powered to perform a pilot rare variant burden analysis. After extensive quality control, our cohort contained 343 CMT cases, 515 HSP cases, and 935 non-neurological controls. We assessed the cumulative mutational burden across disease genes, explored the evidence for multilocus inheritance, and performed an exome-wide rare variant burden analysis. RESULTS: We replicated the previously described mutational burden in a much larger cohort of CMT cases, and observed the same effect in HSP cases. We identified a preliminary risk allele for CMT in the EXOC4 gene (p value= 6.9 × 10-6, odds ratio [OR] = 2.1) and explored the possibility of multilocus inheritance in IA. CONCLUSION: Our results support the continuing emergence of complex inheritance mechanisms in historically Mendelian disorders.


Assuntos
Doença de Charcot-Marie-Tooth , Paraplegia Espástica Hereditária , Alelos , Doença de Charcot-Marie-Tooth/diagnóstico , Doença de Charcot-Marie-Tooth/genética , Humanos , Mutação , Paraplegia Espástica Hereditária/diagnóstico , Paraplegia Espástica Hereditária/genética , Sequenciamento do Exoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA