Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Mol Cell ; 83(11): 1827-1838.e6, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37267904

RESUMO

CRISPR-associated transposons (CASTs) are natural RNA-directed transposition systems. We demonstrate that transposon protein TniQ plays a central role in promoting R-loop formation by RNA-guided DNA-targeting modules. TniQ residues, proximal to CRISPR RNA (crRNA), are required for recognizing different crRNA categories, revealing an unappreciated role of TniQ to direct transposition into different classes of crRNA targets. To investigate adaptations allowing CAST elements to utilize attachment sites inaccessible to CRISPR-Cas surveillance complexes, we compared and contrasted PAM sequence requirements in both I-F3b CAST and I-F1 CRISPR-Cas systems. We identify specific amino acids that enable a wider range of PAM sequences to be accommodated in I-F3b CAST elements compared with I-F1 CRISPR-Cas, enabling CAST elements to access attachment sites as sequences drift and evade host surveillance. Together, this evidence points to the central role of TniQ in facilitating the acquisition of CRISPR effector complexes for RNA-guided DNA transposition.


Assuntos
Proteínas Associadas a CRISPR , RNA , DNA/genética , Sistemas CRISPR-Cas , Proteínas Associadas a CRISPR/genética
2.
J Eukaryot Microbiol ; 71(3): e13020, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38240465

RESUMO

Biological soil crusts represent a rich habitat for diverse and complex eukaryotic microbial communities. A unique but extremely common habitat is the urban sidewalk and its cracks that collect detritus. While these habitats are ubiquitous across the globe, little to no work has been conducted to characterize protists found there. Amoeboid protists are major predators of bacteria and other microbial eukaryotes in these microhabitats and therefore play a substantial ecological role. From sidewalk crack soil crusts, we have isolated three naked amoebae with finely tapered subpseudopodia, and a simple life cycle consisting of a trophic amoeba and a cyst stage. Using a holistic approach including light, electron, and fluorescence microscopy as well as phylogenetics using the ribosomal small subunit rRNA gene and phylogenomics using 230 nuclear genes, we find that these amoeboid organisms fail to match any previously described eukaryote genus. However, we determined the amoebae belong to the amoebozoan lineage Variosea based on phylogenetics. The molecular analyses place our isolates in two novel genera forming a grade at the base of the variosean group Protosteliida. These three novel varioseans among two novel genera and species are herein named "Kanabo kenzan" and "Parakanabo toge."


Assuntos
Amebozoários , Filogenia , Amebozoários/classificação , Amebozoários/genética , Amebozoários/isolamento & purificação , Solo/parasitologia , Ecossistema , DNA de Protozoário/genética , Cidades
3.
J Eukaryot Microbiol ; 66(1): 158-166, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29858563

RESUMO

The American Type Culture Collection (ATCC) PRA-29 isolate has a publicly available transcriptome, which has led to its inclusion in recent phylogenomic analyses. The ATCC PRA-29 isolate was originally identified and deposited as "Pessonella sp." This taxon branches robustly within the recently discovered clade Cutosea, very distantly related to the clade in which the genus Pessonella is believed to branch based on morphological data. Using detailed light and electron microscopy, we studied the morphology and ultrastructure of ATCC PRA-29 as well as other cutosean amoebae to better elucidate the morphological affinity of ATCC PRA-29 to other amoebozoans. Here, we show that ATCC PRA-29 was misidentified by the original depositor as Pessonella and name it Armaparvus languidus n. gen. n. sp. We show that a cell coat of microscales separated from the cell membrane is a unique trait found in all known cutosean amoebae. As Cutosea represents a clade at the deepest bifurcation in the amoebozoan group Evosea and because this clade is currently taxon-poor, but likely represents a major understudied group it will be important to isolate and describe more cutosean amoebae in the future.


Assuntos
Amebozoários/classificação , Amebozoários/ultraestrutura , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Microscopia de Interferência , Filogenia
4.
Science ; 376(6600): 1476-1481, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35617371

RESUMO

Class 2 CRISPR effectors Cas9 and Cas12 may have evolved from nucleases in IS200/IS605 transposons. IscB is about two-fifths the size of Cas9 but shares a similar domain organization. The associated ωRNA plays the combined role of CRISPR RNA (crRNA) and trans-activating CRISPR RNA (tracrRNA) to guide double-stranded DNA (dsDNA) cleavage. Here we report a 2.78-angstrom cryo-electron microscopy structure of IscB-ωRNA bound to a dsDNA target, revealing the architectural and mechanistic similarities between IscB and Cas9 ribonucleoproteins. Target-adjacent motif recognition, R-loop formation, and DNA cleavage mechanisms are explained at high resolution. ωRNA plays the equivalent function of REC domains in Cas9 and contacts the RNA-DNA heteroduplex. The IscB-specific PLMP domain is dispensable for RNA-guided DNA cleavage. The transition from ancestral IscB to Cas9 involved dwarfing the ωRNA and introducing protein domain replacements.


Assuntos
Proteína 9 Associada à CRISPR , Sistemas CRISPR-Cas , Clivagem do DNA , RNA Guia de Cinetoplastídeos , Ribonucleoproteínas , Motivos de Aminoácidos , Proteína 9 Associada à CRISPR/química , Proteína 9 Associada à CRISPR/genética , Microscopia Crioeletrônica , Conformação de Ácido Nucleico , Domínios Proteicos , RNA Bacteriano/genética , RNA Guia de Cinetoplastídeos/química , Ribonucleoproteínas/química
5.
Science ; 377(6612): 1278-1285, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36007061

RESUMO

The CRISPR-Cas type III-E RNA-targeting effector complex gRAMP/Cas7-11 is associated with a caspase-like protein (TPR-CHAT/Csx29) to form Craspase (CRISPR-guided caspase). Here, we use cryo-electron microscopy snapshots of Craspase to explain its target RNA cleavage and protease activation mechanisms. Target-guide pairing extending into the 5' region of the guide RNA displaces a gating loop in gRAMP, which triggers an extensive conformational relay that allosterically aligns the protease catalytic dyad and opens an amino acid side-chain-binding pocket. We further define Csx30 as the endogenous protein substrate that is site-specifically proteolyzed by RNA-activated Craspase. This protease activity is switched off by target RNA cleavage by gRAMP and is not activated by RNA targets containing a matching protospacer flanking sequence. We thus conclude that Craspase is a target RNA-activated protease with self-regulatory capacity.


Assuntos
Proteínas de Bactérias , Proteínas Associadas a CRISPR , Sistemas CRISPR-Cas , Caspases , Planctomicetos , RNA Guia de Cinetoplastídeos , Proteínas de Bactérias/química , Proteínas Associadas a CRISPR/química , Caspases/química , Microscopia Crioeletrônica , Planctomicetos/enzimologia , Conformação Proteica , RNA Guia de Cinetoplastídeos/química
6.
Nat Struct Mol Biol ; 27(5): 489-499, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32367067

RESUMO

Cas1 integrase associates with Cas2 to insert short DNA fragments into a CRISPR array, establishing nucleic acid memory in prokaryotes. Here we applied single-molecule FRET methods to the Enterococcus faecalis (Efa) Cas1-Cas2 system to establish a kinetic framework describing target-searching, integration, and post-synapsis events. EfaCas1-Cas2 on its own is not able to find the CRISPR repeat in the CRISPR array; it only does so after prespacer loading. The leader sequence adjacent to the repeat further stabilizes EfaCas1-Cas2 contacts, enabling leader-side integration and subsequent spacer-side integration. The resulting post-synaptic complex (PSC) has a surprisingly short mean lifetime. Remarkably, transcription effectively resolves the PSC, and we predict that this is a conserved mechanism that ensures efficient and directional spacer integration in many CRISPR systems. Overall, our study provides a complete model of spacer acquisition, which can be harnessed for DNA-based information storage and cell lineage tracing technologies.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Enterococcus faecalis/enzimologia , Integrases/metabolismo , Eletroporação , Enterococcus faecalis/genética , Escherichia coli/genética , Transferência Ressonante de Energia de Fluorescência , Integrases/genética , Cinética , Microrganismos Geneticamente Modificados , Mutação , Transcrição Gênica
7.
Protist ; 169(6): 853-874, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30415103

RESUMO

Sainouroidea is a molecularly diverse clade of cercozoan flagellates and amoebae in the eukaryotic supergroup Rhizaria. Previous 18S rDNA environmental sequencing of globally collected fecal and soil samples revealed great diversity and high sequence divergence in the Sainouroidea. However, a very limited amount of this diversity has been observed or described. The two described genera of amoebae in this clade are Guttulinopsis, which displays aggregative multicellularity, and Rosculus, which does not. Although the identity of Guttulinopsis is straightforward due to the multicellular fruiting bodies they form, the same is not true for Rosculus, and the actual identity of the original isolate is unclear. Here we isolated amoebae with morphologies like that of Guttulinopsis and Rosculus from many environments and analyzed them using 18S rDNA sequencing, light microscopy, and transmission electron microscopy. We define a molecular species concept for Sainouroidea that resulted in the description of 4 novel genera and 12 novel species of naked amoebae. Aggregative fruiting is restricted to the genus Guttulinopsis, but other than this there is little morphological variation amongst these taxa. Taken together, simple identification of these amoebae is problematic and potentially unresolvable without the 18S rDNA sequence.


Assuntos
Cercozoários/classificação , Cercozoários/isolamento & purificação , Filogenia , Cercozoários/citologia , Cercozoários/genética , Análise por Conglomerados , DNA de Protozoário/química , DNA de Protozoário/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Microbiologia Ambiental , Microscopia , Microscopia Eletrônica de Transmissão , RNA Ribossômico 18S/genética , Análise de Sequência de DNA
8.
Biol Direct ; 11(1): 69, 2016 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-28031045

RESUMO

BACKGROUND: Acanthamoebidae is a "family" level amoebozoan group composed of the genera Acanthamoeba, Protacanthamoeba, and very recently Luapeleamoeba. This clade of amoebozoans has received considerable attention from the broader scientific community as Acanthamoeba spp. represent both model organisms and human pathogens. While the classical composition of the group (Acanthamoeba + Protacanthamoeba) has been well accepted due to the morphological and ultrastructural similarities of its members, the Acanthamoebidae has never been highly statistically supported in single gene phylogenetic reconstructions of Amoebozoa either by maximum likelihood (ML) or Bayesian analyses. RESULTS: Here we show using a phylogenomic approach that the Acanthamoebidae is a fully supported monophyletic group within Amoebozoa with both ML and Bayesian analyses. We also expand the known range of morphological and life cycle diversity found in the Acanthamoebidae by demonstrating that the amoebozoans "Protostelium" arachisporum, Dracoamoeba jormungandri n. g. n. sp., and Vacuolamoeba acanthoformis n.g. n.sp., belong within the group. We also found that "Protostelium" pyriformis is clearly a species of Acanthamoeba making it the first reported sporocarpic member of the genus, that is, an amoeba that individually forms a walled, dormant propagule elevated by a non-cellular stalk. Our phylogenetic analyses recover a fully supported Acanthamoebidae composed of five genera. Two of these genera (Acanthamoeba and Luapeleameoba) have members that are sporocarpic. CONCLUSIONS: Our results provide high statistical support for an Acanthamoebidae that is composed of five distinct genera. This study increases the known morphological diversity of this group and shows that species of Acanthamoeba can include spore-bearing stages. This further illustrates the widespread nature of spore-bearing stages across the tree of Amoebozoa. REVIEWERS: This article was reviewed by Drs. Eugene Koonin, Purificacion Lopez-Garcia and Sandra Baldauf. Sandra Baldauf was nominated by Purificacion Lopez-Garcia, an Editorial Board member.


Assuntos
Acantopodina/classificação , Filogenia , Proteínas de Protozoários/genética , Acantopodina/citologia , Acantopodina/genética , Evolução Molecular , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA