Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Exp Biol ; 215(Pt 4): 642-52, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22279071

RESUMO

The alewife (Alosa pseudoharengus) is a clupeid that undergoes larval and juvenile development in freshwater preceding marine habitation. The purpose of this study was to investigate osmoregulatory mechanisms in alewives that permit homeostasis in different salinities. To this end, we measured physiological, branchial biochemical and cellular responses in juvenile alewives acclimated to freshwater (0.5 p.p.t.) or seawater (35.0 p.p.t.). Plasma chloride concentration was higher in seawater-acclimated than freshwater-acclimated individuals (141 mmol l(-1) vs 134 mmol l(-1)), but the hematocrit remained unchanged. In seawater-acclimated individuals, branchial Na(+)/K(+)-ATPase (NKA) activity was higher by 75%. Western blot analysis indicated that the abundance of the NKA α-subunit and a Na(+)/K(+)/2Cl(-) cotransporter (NKCC1) were greater in seawater-acclimated individuals by 40% and 200%, respectively. NKA and NKCC1 were localized on the basolateral surface and tubular network of ionocytes in both acclimation groups. Immunohistochemical labeling for the cystic fibrosis transmembrane conductance regulator (CFTR) was restricted to the apical crypt of ionocytes in seawater-acclimated individuals, whereas sodium/hydrogen exchanger 3 (NHE3) labeling was present on the apical surface of ionocytes in both acclimation groups. Ionocytes were concentrated on the trailing edge of the gill filament, evenly distributed along the proximal 75% of the filamental axis and reduced distally. Ionocyte size and number on the gill filament were not affected by salinity; however, the number of lamellar ionocytes was significantly lower in seawater-acclimated fish. Confocal z-series reconstructions revealed that mature ionocytes in seawater-acclimated alewives occurred in multicellular complexes. These complexes might reduce paracellular Na(+) resistance, hence facilitating Na(+) extrusion in hypo-osmoregulating juvenile alewives after seaward migration.


Assuntos
Transporte de Íons/fisiologia , Trocadores de Sódio-Hidrogênio/metabolismo , Simportadores de Cloreto de Sódio-Potássio/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Equilíbrio Hidroeletrolítico/fisiologia , Animais , Cloretos/sangue , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Peixes , Água Doce , Brânquias/citologia , Brânquias/metabolismo , Brânquias/fisiologia , Salinidade , Água do Mar , Trocador 3 de Sódio-Hidrogênio , Membro 2 da Família 12 de Carreador de Soluto
2.
Science ; 220(4601): 1047-9, 1983 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-17754550

RESUMO

Schools of juvenile haemulid fish feed in sea grass beds at night. By day they rest over coral heads, where they excrete substantial quantities of ammonium and particulate nitrogen and phosphorus into the nutrient-poor waters. The percentages of these nutrients contributed by the fish were comparable to those from other sources. Coral heads with resident fish schools grew faster than those without resident schools, indicating that fish may be more beneficial to the corals than has been assumed.

3.
Oecologia ; 109(4): 516-529, 1997 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28307335

RESUMO

This study focuses on the seasonal accumulation and depletion of somatic energy in the Atlantic silverside (Menidia menidia), an annual estuarine fish. Previous research revealed that northern silversides are subject to strong size-dependent winter mortality, while southern fish suffer no appreciable winter mortality. To examine whether there was geographic differentiation in allocation strategies, we compared temporal patterns of energy storage and utilization among three populations along this gradient in seasonality. The comparative design used monthly or biweekly samples of fish collected in the wild, as well as samples of fish from each population reared in a common environment, where genetic differences can be clarified. Somatic energy stores were quantified via gravimetric analysis of neutral storage lipids and lean tissue. Analysis revealed that small individuals maintained relatively low levels of lipid reserves, which may account for their lower survival in winter. Wild fish in the north rapidly accumulated large somatic reserves, which were depleted over the winter and then increased again during the subsequent spring breeding season. In wild southern fish, relatively small reserves accumulated slowly until breeding commenced in the spring. The common-environment comparison of somatic storage patterns revealed a genetic basis for among-population differences in reserve accumulation rates, but no differences in the amount of reserves stored. We conclude that the overwinter depletion of somatic reserves has a significant selective impact on energy accumulation and allocation strategies in seasonal environments.

4.
Oecologia ; 122(2): 210-219, 2000 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28308374

RESUMO

Understanding the evolution of growth rate requires knowledge of the physiology of growth. This study explored the physiological basis of countergradient variation (CnGV) in somatic growth across latitudinal populations of the Atlantic silverside, Menidia menidia. Energetics of northern (Nova Scotia, Canada) and southern (South Carolina, USA) genotypes were compared across resource levels, temperatures, and fish sizes to identify trade-offs to rapid growth. Offered unlimited resources, genotypes differed in both energy acquisition and allocation. Food consumption, growth, and efficiency of northern genotypes were consistently higher than in southern genotypes, across temperatures and body sizes. Feeding metabolism (specific dynamic action; SDA) was proportional to meal size, differing between genotypes to the extent that food consumption differed. Given limited resources, northern and southern genotypes displayed similar growth, efficiency, routine activity, and SDA across temperatures and fish sizes. Routine metabolism was equal at 17°C and 22°C, yet was significantly higher in northern fish at 28°C. Growth rates in M. menidia do not appear to trade off across environments or body sizes, i.e., at no temperature, ration, or size do southern fish outgrow northern conspecifics. Nor does submaximal growth result from increased costs of maintenance, tissue synthesis, or routine activity. Based on our findings, we propose that CnGV consumption and growth in M. menidia likely result from trade-offs with other energetic components, namely sustained and burst swimming.

5.
Trends Ecol Evol ; 10(6): 248-52, 1995 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21237029

RESUMO

Countergradient variation is a geographical pattern of genotypes (with respect to environments) in which genetic influences on a trait oppose environmental influences, thereby minimizing phenotypic change along the gradient. Phenotypic similarity across changing environments ought to be of intense interest because it belies considerable genotypic change. When it occurs in characters that are positively associated with fitness, countergradient variation conflicts with the hypothesis that local adaptation to one environment trades off against performance in another environment. Cases of countergradient variation therefore offer unique insight into the mechanisms that produce and maintain phenotypic similarity and/or differences along environmental gradients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA