Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Circ Res ; 102(10): 1192-201, 2008 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-18420943

RESUMO

Vascular endothelial (VE)-cadherin is the major adhesion molecule of endothelial adherens junctions. It plays an essential role in controlling endothelial permeability, vascular integrity, leukocyte transmigration, and angiogenesis. Elevated levels of soluble VE-cadherin are associated with diseases like coronary atherosclerosis. Previous data showed that the extracellular domain of VE-cadherin is released by an unknown metalloprotease activity during apoptosis. In this study, we used gain-of-function analyses, inhibitor studies, and RNA interference experiments to analyze the proteolytic release of VE-cadherin in human umbilical vein endothelial cells (HUVECs). We found that VE-cadherin is specifically cleaved by the disintegrin and metalloprotease ADAM10 in its ectodomain, releasing a soluble fragment and generating a carboxyl-terminal membrane-bound stub, which is a substrate for a subsequent gamma-secretase cleavage. This ADAM10-mediated proteolysis could be induced by Ca(2+) influx and staurosporine treatment, indicating that ADAM10-mediated VE-cadherin cleavage contributes to the dissolution of adherens junctions during endothelial cell activation and apoptosis, respectively. In contrast, protein kinase C activation or inhibition did not modulate VE-cadherin processing. Increased ADAM10 expression was functionally associated with an increase in endothelial permeability. Remarkably, our data indicate that ADAM10 activity also contributes to the thrombin-induced decrease of endothelial cell-cell adhesion. Moreover, knockdown of ADAM10 in HUVECs as well as in T cells by small interfering RNA impaired T-cell transmigration. Taken together, our data identify ADAM10 as a novel regulator of vascular permeability and demonstrate a hitherto unknown function of ADAM10 in the regulation of VE-cadherin-dependent endothelial cell functions and leukocyte transendothelial migration.


Assuntos
Proteínas ADAM/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Antígenos CD/metabolismo , Caderinas/metabolismo , Movimento Celular/imunologia , Células Endoteliais/imunologia , Proteínas de Membrana/metabolismo , Linfócitos T/citologia , Proteínas ADAM/antagonistas & inibidores , Proteínas ADAM/genética , Proteína ADAM10 , Junções Aderentes/imunologia , Junções Aderentes/metabolismo , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/genética , Cálcio/metabolismo , Permeabilidade Capilar/efeitos dos fármacos , Permeabilidade Capilar/fisiologia , Células Cultivadas , Células Endoteliais/metabolismo , Inibidores Enzimáticos/farmacologia , Hemostáticos/farmacologia , Humanos , Migração e Rolagem de Leucócitos/fisiologia , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , Proteína Quinase C/metabolismo , RNA Interferente Pequeno , Linfócitos T/imunologia , Trombina/farmacologia , Veias Umbilicais/citologia
2.
Endocrinology ; 149(10): 4846-56, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18566127

RESUMO

The classical estrogen receptor (ER) mediates genomic as well as rapid nongenomic estradiol responses. In case of genomic responses, the ER acts as a ligand-dependent transcription factor that regulates gene expression in estrogen target tissues. In contrast, nongenomic effects are initiated at the plasma membrane and lead to rapid activation of cytoplasmic signal transduction pathways. Recently, an orphan G protein-coupled receptor, GPR30, has been claimed to bind to and to signal in response to estradiol. GPR30 therefore might mediate some of the nongenomic estradiol effects. The present study was performed to clarify the controversy about the subcellular localization of GPR30 and to gain insight into the in vivo function of this receptor. In transiently transfected cells as well as cells endogenously expressing GPR30, we confirmed that the receptor localized to the endoplasmic reticulum. However, using radioactive estradiol, we observed only saturable, specific binding to the classical ER but not to GPR30. Estradiol stimulation of cells expressing GPR30 had no impact on intracellular cAMP or calcium levels. To elucidate the physiological role of GPR30, we performed in vivo experiments with estradiol and G1, a compound that has been claimed to act as selective GPR30 agonist. In two classical estrogen target organs, the uterus and the mammary gland, G1 did not show any estrogenic effect. Taken together, we draw the conclusion that GPR30 is still an orphan receptor.


Assuntos
Retículo Endoplasmático/metabolismo , Estradiol/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Células COS , Cálcio/metabolismo , Chlorocebus aethiops , AMP Cíclico/metabolismo , Estradiol/farmacologia , Feminino , Proteínas de Fluorescência Verde/genética , Humanos , Glândulas Mamárias Animais/efeitos dos fármacos , Glândulas Mamárias Animais/crescimento & desenvolvimento , Glândulas Mamárias Animais/fisiologia , Camundongos , Ovariectomia , Ligação Proteica/fisiologia , Receptores de Estrogênio , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Transfecção , Útero/efeitos dos fármacos , Útero/crescimento & desenvolvimento , Útero/fisiologia
3.
Endocrinology ; 156(11): 4365-73, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26284426

RESUMO

The prolactin receptor (PRLR) has been implicated in a variety of physiological processes (lactation, reproduction) and diseases (breast cancer, autoimmune diseases). Prolactin synthesis in the pituitary and extrapituitary sites is regulated by different promoters. Dopamine receptor agonists such as bromocriptine can only interfere with pituitary prolactin synthesis and thus do not induce a complete blockade of PRLR signaling. Here we describe the identification of a human monoclonal antibody 005-C04 that blocks PRLR-mediated signaling at nanomolar concentrations in vitro. In contrast to a negative control antibody, the neutralizing PRLR antibody 005-C04 inhibits signal transducer and activator of transcription 5 phosphorylation in T47D cells and proliferation of BaF3 cells stably expressing murine or human PRLRs in a dose-dependent manner. In vivo application of this new function-blocking PRLR antibody reflects the phenotype of PRLR-deficient mice. After antibody administration female mice become infertile in a reversible manner. In lactating dams, the antibody induces mammary gland involution and negatively interferes with lactation capacity as evidenced by reduced milk protein expression in mammary glands and impaired litter weight gain. Antibody-mediated blockade of the PRLR in vivo stimulates hair regrowth in female mice. Compared with peptide-derived PRLR antagonists, the PRLR antibody 005-C04 exhibits several advantages such as higher potency, noncompetitive inhibition of PRLR signaling, and a longer half-life, which allows its use as a tool compound also in long-term in vivo studies. Therefore, we suggest that this antibody will help to further our understanding of the role of auto- and paracrine PRLR signaling in health and disease.


Assuntos
Anticorpos Neutralizantes/administração & dosagem , Fenótipo , Receptores da Prolactina/imunologia , Animais , Relação Dose-Resposta a Droga , Feminino , Camundongos , Camundongos Knockout , Receptores da Prolactina/genética , Receptores da Prolactina/metabolismo
4.
Virology ; 390(2): 250-60, 2009 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-19520410

RESUMO

An ideal system to investigate individual determinants of the replication process of (+)-strand RNA viruses is a cell-free extract that supports viral protein and RNA synthesis in a synchronized manner. Here, we applied a translation/replication system based on cytoplasmic extracts of Nicotiana tabacum cells to Tomato bushy stunt virus (TBSV) RNA. In vitro translated TBSV proteins p33 and p92 form viral replicase, which, in the same reaction, accomplishes the entire replication cycle on exogenous TBSV DI or full-length RNA. Tests of mutant TBSV RNAs confirmed the template specificity of the in vitro replication reaction. Complementation experiments ascertained the significance of an earlier identified TBSV host factor. Interestingly, formation of the viral replicase occurs also in the absence of concurrent protein synthesis demonstrating that translation and RNA replication are not functionally linked in this system. Our studies with cell-free extracts of a plant host thus confirmed earlier findings and enabled novel insights into the TBSV RNA replication process.


Assuntos
Nicotiana/virologia , RNA Viral/metabolismo , Tombusvirus/fisiologia , Replicação Viral , Sistema Livre de Células , Biossíntese de Proteínas , RNA Polimerase Dependente de RNA/metabolismo , Proteínas Virais/metabolismo
5.
J Immunol ; 178(12): 8064-72, 2007 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-17548644

RESUMO

CX3CL1 (fractalkine) and CXCL16 are unique members of the chemokine family because they occur not only as soluble, but also as membrane-bound molecules. Expressed as type I transmembrane proteins, the ectodomain of both chemokines can be proteolytically cleaved from the cell surface, a process known as shedding. Our previous studies showed that the disintegrin and metalloproteinase 10 (ADAM10) mediates the largest proportion of constitutive CX3CL1 and CXCL16 shedding, but is not involved in the phorbolester-induced release of the soluble chemokines (inducible shedding). In this study, we introduce the calcium-ionophore ionomycin as a novel, very rapid, and efficient inducer of CX3CL1 and CXCL16 shedding. By transfection in COS-7 cells and ADAM10-deficient murine embryonic fibroblasts combined with the use of selective metalloproteinase inhibitors, we demonstrate that the inducible generation of soluble forms of these chemokines is dependent on ADAM10 activity. Analysis of the C-terminal cleavage fragments remaining in the cell membrane reveals multiple cleavage sites used by ADAM10, one of which is preferentially used upon stimulation with ionomycin. In adhesion studies with CX3CL1-expressing ECV-304 cells and cytokine-stimulated endothelial cells, we demonstrate that induced CX3CL1 shedding leads to the release of bound monocytic cell lines and PBMC from their cellular substrate. These data provide evidence for an inducible release mechanism via ADAM10 potentially important for leukocyte diapedesis.


Assuntos
Proteínas ADAM/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Adesão Celular , Quimiocinas CX3C/metabolismo , Quimiocinas CXC/metabolismo , Desintegrinas/metabolismo , Leucócitos/imunologia , Proteínas de Membrana/metabolismo , Receptores Depuradores/metabolismo , Proteínas ADAM/genética , Proteína ADAM10 , Secretases da Proteína Precursora do Amiloide/genética , Animais , Células COS , Membrana Celular/metabolismo , Quimiocina CX3CL1 , Quimiocina CXCL16 , Chlorocebus aethiops , Humanos , Metaloproteinase 10 da Matriz/metabolismo , Proteínas de Membrana/genética , Camundongos , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA