Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plants (Basel) ; 13(17)2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39273895

RESUMO

Perennial warm-season grasses typically have reduced seed yield, making it essential to identify the critical seed yield components. An induced increase in nitrogen could help determine which components are most limiting. This research aimed to estimate seed yield components in Paspalum; evaluate N fertilization effects on the reproductive phase, seed yield components, and seed quality; and establish the pattern of seed shattering over time. Nine genotypes covering different reproductive periods were used. The experimental design was a randomized complete block design in a split-plot arrangement with three replications. The main plots had two nitrogen levels (0 and 150 Kg N ha-1), and the sub-plots contained different genotypes. Seed yield variation was mainly related to reproductive tiller density among germplasm with different flowering periods. Early-flowering germplasm showed an extended flowering period (159%), greater tiller density (27.7%), greater reproductive tiller density (157%), and higher yield (302%) in response to nitrogen fertilization. Seed-quality traits and seed retention were not affected by nitrogen fertilization. Seed retention over time followed an inverted sigmoid pattern, though there was considerable variation among taxonomic groups. Early-flowering germplasm exhibited superior seed retention. Seed yield in Paspalum is mainly influenced by the density of reproductive tillers and seed retention.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA