Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Chem Biol ; 19(2): 206-217, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36280795

RESUMO

Ferredoxins comprise a large family of iron-sulfur (Fe-S) proteins that shuttle electrons in diverse biological processes. Human mitochondria contain two isoforms of [2Fe-2S] ferredoxins, FDX1 (aka adrenodoxin) and FDX2, with known functions in cytochrome P450-dependent steroid transformations and Fe-S protein biogenesis. Here, we show that only FDX2, but not FDX1, is involved in Fe-S protein maturation. Vice versa, FDX1 is specific not only for steroidogenesis, but also for heme a and lipoyl cofactor biosyntheses. In the latter pathway, FDX1 provides electrons to kickstart the radical chain reaction catalyzed by lipoyl synthase. We also identified lipoylation as a target of the toxic antitumor copper ionophore elesclomol. Finally, the striking target specificity of each ferredoxin was assigned to small conserved sequence motifs. Swapping these motifs changed the target specificity of these electron donors. Together, our findings identify new biochemical tasks of mitochondrial ferredoxins and provide structural insights into their functional specificity.


Assuntos
Ferredoxinas , Proteínas Ferro-Enxofre , Humanos , Isoformas de Proteínas/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Mitocôndrias/metabolismo , Proteínas Ferro-Enxofre/metabolismo
2.
Nat Commun ; 15(1): 3269, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627381

RESUMO

Maturation of iron-sulfur proteins in eukaryotes is initiated in mitochondria by the core iron-sulfur cluster assembly (ISC) complex, consisting of the cysteine desulfurase sub-complex NFS1-ISD11-ACP1, the scaffold protein ISCU2, the electron donor ferredoxin FDX2, and frataxin, a protein dysfunctional in Friedreich's ataxia. The core ISC complex synthesizes [2Fe-2S] clusters de novo from Fe and a persulfide (SSH) bound at conserved cluster assembly site residues. Here, we elucidate the poorly understood Fe-dependent mechanism of persulfide transfer from cysteine desulfurase NFS1 to ISCU2. High-resolution cryo-EM structures obtained from anaerobically prepared samples provide snapshots that both visualize different stages of persulfide transfer from Cys381NFS1 to Cys138ISCU2 and clarify the molecular role of frataxin in optimally positioning assembly site residues for fast sulfur transfer. Biochemical analyses assign ISCU2 residues essential for sulfur transfer, and reveal that Cys138ISCU2 rapidly receives the persulfide without a detectable intermediate. Mössbauer spectroscopy assessing the Fe coordination of various sulfur transfer intermediates shows a dynamic equilibrium between pre- and post-sulfur-transfer states shifted by frataxin. Collectively, our study defines crucial mechanistic stages of physiological [2Fe-2S] cluster assembly and clarifies frataxin's molecular role in this fundamental process.


Assuntos
Frataxina , Proteínas Ferro-Enxofre , Proteínas Ferro-Enxofre/metabolismo , Sulfetos/metabolismo , Enxofre/metabolismo , Liases de Carbono-Enxofre/metabolismo , Proteínas de Ligação ao Ferro/metabolismo
3.
FEBS Lett ; 597(1): 102-121, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36443530

RESUMO

Ferredoxins (FDXs) comprise a large family of iron-sulfur proteins that shuttle electrons from NADPH and FDX reductases into diverse biological processes. This review focuses on the structure, function and specificity of mitochondrial [2Fe-2S] FDXs that are related to bacterial FDXs due to their endosymbiotic inheritance. Their classical function in cytochrome P450-dependent steroid transformations was identified around 1960, and is exemplified by mammalian FDX1 (aka adrenodoxin). Thirty years later the essential function in cellular Fe/S protein biogenesis was discovered for the yeast mitochondrial FDX Yah1 that is additionally crucial for the formation of haem a and ubiquinone CoQ6 . In mammals, Fe/S protein biogenesis is exclusively performed by the FDX1 paralog FDX2, despite the high structural similarity of both proteins. Recently, additional and specific roles of human FDX1 in haem a and lipoyl cofactor biosyntheses were described. For lipoyl synthesis, FDX1 transfers electrons to the radical S-adenosyl methionine-dependent lipoyl synthase to kickstart its radical chain reaction. The high target specificity of the two mammalian FDXs is contained within small conserved sequence motifs, that upon swapping change the target selection of these electron donors.


Assuntos
Ferredoxinas , Proteínas Ferro-Enxofre , Cães , Animais , Humanos , Ferredoxinas/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Adrenodoxina/química , Adrenodoxina/metabolismo , Saccharomyces cerevisiae/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Heme/metabolismo , Mamíferos/metabolismo
4.
Nat Commun ; 12(1): 6902, 2021 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-34824239

RESUMO

Synthesis of iron-sulfur (Fe/S) clusters in living cells requires scaffold proteins for both facile synthesis and subsequent transfer of clusters to target apoproteins. The human mitochondrial ISCU2 scaffold protein is part of the core ISC (iron-sulfur cluster assembly) complex that synthesizes a bridging [2Fe-2S] cluster on dimeric ISCU2. Initial iron and sulfur loading onto monomeric ISCU2 have been elucidated biochemically, yet subsequent [2Fe-2S] cluster formation and dimerization of ISCU2 is mechanistically ill-defined. Our structural, biochemical and cell biological experiments now identify a crucial function of the universally conserved N-terminal Tyr35 of ISCU2 for these late reactions. Mixing two, per se non-functional ISCU2 mutant proteins with oppositely charged Asp35 and Lys35 residues, both bound to different cysteine desulfurase complexes NFS1-ISD11-ACP, restores wild-type ISCU2 maturation demonstrating that ionic forces can replace native Tyr-Tyr interactions during dimerization-induced [2Fe-2S] cluster formation. Our studies define the essential mechanistic role of Tyr35 in the reaction cycle of de novo mitochondrial [2Fe-2S] cluster synthesis.


Assuntos
Dimerização , Proteínas Ferro-Enxofre/química , Tirosina/química , Apoproteínas , Liases de Carbono-Enxofre , Cristalografia por Raios X , Ferredoxinas , Células HeLa , Humanos , Ferro , Mitocôndrias , Proteínas Mutantes , Proteínas Recombinantes , Enxofre
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA