Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
J Biol Chem ; 299(4): 103071, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36849008

RESUMO

Lipid droplets (LDs) are fat-storing organelles enclosed by a phospholipid monolayer, which harbors membrane-associated proteins that regulate distinct LD functions. LD proteins are degraded by the ubiquitin-proteasome system (UPS) and/or by lysosomes. Because chronic ethanol (EtOH) consumption diminishes the hepatic functions of the UPS and lysosomes, we hypothesized that continuous EtOH consumption slows the breakdown of lipogenic LD proteins targeted for degradation, thereby causing LD accumulation. Here, we report that LDs from livers of EtOH-fed rats exhibited higher levels of polyubiquitylated-proteins, linked at either lysine 48 (directed to proteasome) or lysine 63 (directed to lysosomes) than LDs from pair-fed control rats. MS proteomics of LD proteins, immunoprecipitated with UB remnant motif antibody (K-ε-GG), identified 75 potential UB proteins, of which 20 were altered by chronic EtOH administration. Among these, hydroxysteroid 17ß-dehydrogenase 11 (HSD17ß11) was prominent. Immunoblot analyses of LD fractions revealed that EtOH administration enriched HSD17ß11 localization to LDs. When we overexpressed HSD17ß11 in EtOH-metabolizing VA-13 cells, the steroid dehydrogenase 11 became principally localized to LDs, resulting in elevated cellular triglycerides (TGs). Ethanol exposure augmented cellular TG, while HSD17ß11 siRNA decreased both control and EtOH-induced TG accumulation. Remarkably, HSD17ß11 overexpression lowered the LD localization of adipose triglyceride lipase. EtOH exposure further reduced this localization. Reactivation of proteasome activity in VA-13 cells blocked the EtOH-induced rises in both HSD17ß11 and TGs. Our findings indicate that EtOH exposure blocks HSD17ß11 degradation by inhibiting the UPS, thereby stabilizing HSD17ß11 on LD membranes, to prevent lipolysis by adipose triglyceride lipase and promote cellular LD accumulation.


Assuntos
17-Hidroxiesteroide Desidrogenases , Etanol , Fígado Gorduroso , Animais , Ratos , Etanol/farmacologia , Etanol/metabolismo , Fígado Gorduroso/metabolismo , Lipase/genética , Gotículas Lipídicas/metabolismo , Metabolismo dos Lipídeos , Lisina/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , 17-Hidroxiesteroide Desidrogenases/metabolismo
2.
Proc Natl Acad Sci U S A ; 117(51): 32443-32452, 2020 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-33288726

RESUMO

Hepatocytes metabolize energy-rich cytoplasmic lipid droplets (LDs) in the lysosome-directed process of autophagy. An organelle-selective form of this process (macrolipophagy) results in the engulfment of LDs within double-membrane delimited structures (autophagosomes) before lysosomal fusion. Whether this is an exclusive autophagic mechanism used by hepatocytes to catabolize LDs is unclear. It is also unknown whether lysosomes alone might be sufficient to mediate LD turnover in the absence of an autophagosomal intermediate. We performed live-cell microscopy of hepatocytes to monitor the dynamic interactions between lysosomes and LDs in real-time. We additionally used a fluorescent variant of the LD-specific protein (PLIN2) that exhibits altered fluorescence in response to LD interactions with the lysosome. We find that mammalian lysosomes and LDs undergo interactions during which proteins and lipids can be transferred from LDs directly into lysosomes. Electron microscopy (EM) of primary hepatocytes or hepatocyte-derived cell lines supports the existence of these interactions. It reveals a dramatic process whereby the lipid contents of the LD can be "extruded" directly into the lysosomal lumen under nutrient-limited conditions. Significantly, these interactions are not affected by perturbations to crucial components of the canonical macroautophagy machinery and can occur in the absence of double-membrane lipoautophagosomes. These findings implicate the existence of an autophagic mechanism used by mammalian cells for the direct transfer of LD components into the lysosome for breakdown. This process further emphasizes the critical role of lysosomes in hepatic LD catabolism and provides insights into the mechanisms underlying lipid homeostasis in the liver.


Assuntos
Autofagia/fisiologia , Hepatócitos/metabolismo , Gotículas Lipídicas/metabolismo , Lisossomos/metabolismo , Animais , Autofagossomos/metabolismo , Linhagem Celular , Metabolismo dos Lipídeos , Camundongos , Microscopia Confocal , Transporte Proteico , Ratos Sprague-Dawley
3.
Am J Hum Genet ; 105(1): 108-121, 2019 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-31204009

RESUMO

Pediatric acute liver failure (ALF) is life threatening with genetic, immunologic, and environmental etiologies. Approximately half of all cases remain unexplained. Recurrent ALF (RALF) in infants describes repeated episodes of severe liver injury with recovery of hepatic function between crises. We describe bi-allelic RINT1 alterations as the cause of a multisystem disorder including RALF and skeletal abnormalities. Three unrelated individuals with RALF onset ≤3 years of age have splice alterations at the same position (c.1333+1G>A or G>T) in trans with a missense (p.Ala368Thr or p.Leu370Pro) or in-frame deletion (p.Val618_Lys619del) in RINT1. ALF episodes are concomitant with fever/infection and not all individuals have complete normalization of liver function testing between episodes. Liver biopsies revealed nonspecific liver damage including fibrosis, steatosis, or mild increases in Kupffer cells. Skeletal imaging revealed abnormalities affecting the vertebrae and pelvis. Dermal fibroblasts showed splice-variant mediated skipping of exon 9 leading to an out-of-frame product and nonsense-mediated transcript decay. Fibroblasts also revealed decreased RINT1 protein, abnormal Golgi morphology, and impaired autophagic flux compared to control. RINT1 interacts with NBAS, recently implicated in RALF, and UVRAG, to facilitate Golgi-to-ER retrograde vesicle transport. During nutrient depletion or infection, Golgi-to-ER transport is suppressed and autophagy is promoted through UVRAG regulation by mTOR. Aberrant autophagy has been associated with the development of similar skeletal abnormalities and also with liver disease, suggesting that disruption of these RINT1 functions may explain the liver and skeletal findings. Clarifying the pathomechanism underlying this gene-disease relationship may inform therapeutic opportunities.


Assuntos
Autofagia , Doenças do Desenvolvimento Ósseo/etiologia , Proteínas de Ciclo Celular/genética , Fibroblastos/patologia , Falência Hepática Aguda/etiologia , Mutação , Idade de Início , Alelos , Sequência de Aminoácidos , Doenças do Desenvolvimento Ósseo/metabolismo , Doenças do Desenvolvimento Ósseo/patologia , Proteínas de Ciclo Celular/metabolismo , Criança , Pré-Escolar , Feminino , Fibroblastos/metabolismo , Complexo de Golgi/metabolismo , Complexo de Golgi/patologia , Humanos , Lactente , Falência Hepática Aguda/metabolismo , Falência Hepática Aguda/patologia , Masculino , Linhagem , Transporte Proteico , Recidiva , Homologia de Sequência
5.
Semin Liver Dis ; 39(3): 283-290, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31041790

RESUMO

Lipid droplets (LDs) are key sites of neutral lipid storage that can be found in all cells. Metabolic imbalances between the synthesis and degradation of LDs can result in the accumulation of significant amounts of lipid deposition, a characteristic feature of hepatocytes in patients with fatty liver disease, a leading indication for liver transplant in the United States. In this review, the authors highlight new literature related to the synthesis and autophagic catabolism of LDs, discussing key proteins and machinery involved in these processes. They also discuss recent findings that have revealed novel genetic risk factors associated with LD biology that contribute to lipid retention in the diseased liver.


Assuntos
Autofagia , Fígado Gorduroso/metabolismo , Gotículas Lipídicas/metabolismo , Animais , Fígado Gorduroso/fisiopatologia , Humanos , Hepatopatia Gordurosa não Alcoólica/genética
6.
J Biol Chem ; 292(28): 11815-11828, 2017 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-28515323

RESUMO

In liver steatosis (i.e. fatty liver), hepatocytes accumulate many large neutral lipid storage organelles known as lipid droplets (LDs). LDs are important in the maintenance of energy homeostasis, but the signaling mechanisms that stimulate LD metabolism in hepatocytes are poorly defined. In adipocytes, catecholamines target the ß-adrenergic (ß-AR)/cAMP pathway to activate cytosolic lipases and induce their recruitment to the LD surface. Therefore, the goal of this study was to determine whether hepatocytes, like adipocytes, also undergo cAMP-mediated lipolysis in response to ß-AR stimulation. Using primary rat hepatocytes and human hepatoma cells, we found that treatment with the ß-AR agent isoproterenol caused substantial LD loss via activation of cytosolic lipases adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL). ß-Adrenergic stimulation rapidly activated PKA, which led to the phosphorylation of ATGL and HSL and their recruitment to the LD surface. To test whether this ß-AR-dependent lipolysis pathway was altered in a model of alcoholic fatty liver, primary hepatocytes from rats fed a 6-week EtOH-containing Lieber-DeCarli diet were treated with cAMP agonists. Compared with controls, EtOH-exposed hepatocytes showed a drastic inhibition in ß-AR/cAMP-induced LD breakdown and the phosphorylation of PKA substrates, including HSL. This observation was supported in VA-13 cells, an EtOH-metabolizing human hepatoma cell line, which displayed marked defects in both PKA activation and isoproterenol-induced ATGL translocation to the LD periphery. In summary, these findings suggest that ß-AR stimulation mobilizes cytosolic lipases for LD breakdown in hepatocytes, and perturbation of this pathway could be a major consequence of chronic EtOH insult leading to fatty liver.


Assuntos
Agonistas Adrenérgicos beta/farmacologia , AMP Cíclico/agonistas , Fígado Gorduroso Alcoólico/metabolismo , Hepatócitos/efeitos dos fármacos , Lipólise/efeitos dos fármacos , Receptores Adrenérgicos beta/metabolismo , Sistemas do Segundo Mensageiro/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Células Cultivadas , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/química , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Ativação Enzimática/efeitos dos fármacos , Fígado Gorduroso Alcoólico/patologia , Feminino , Hepatócitos/citologia , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Lipase/química , Lipase/metabolismo , Gotículas Lipídicas/efeitos dos fármacos , Gotículas Lipídicas/metabolismo , Gotículas Lipídicas/patologia , Masculino , Fosforilação/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Ratos , Receptores Adrenérgicos beta/química , Esterol Esterase/química , Esterol Esterase/metabolismo
7.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1862(10 Pt B): 1178-1187, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28642194

RESUMO

Lipophagy is defined as the autophagic degradation of intracellular lipid droplets (LDs). While the field of lipophagy research is relatively young, an expansion of research in this area over the past several years has greatly advanced our understanding of lipophagy. Since its original characterization in fasted liver, the contribution of lipophagy is now recognized in various organisms, cell types, metabolic states and disease models. Moreover, recent studies provide exciting new insights into the underlying mechanisms of lipophagy induction as well as the consequences of lipophagy on cell metabolism and signaling. This review summarizes recent work focusing on LDs and lipophagy as well as highlighting challenges and future directions of research as our understanding of lipophagy continues to grow and evolve. This article is part of a Special Issue entitled: Recent Advances in Lipid Droplet Biology edited by Rosalind Coleman and Matthijs Hesselink.


Assuntos
Autofagia/fisiologia , Gotículas Lipídicas/fisiologia , Transdução de Sinais/fisiologia , Animais , Humanos
8.
Biochem J ; 473(19): 3341-54, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27435098

RESUMO

Protein secretion and membrane insertion occur through the ubiquitous Sec machinery. In this system, insertion involves the targeting of translating ribosomes via the signal recognition particle and its cognate receptor to the SecY (bacteria and archaea)/Sec61 (eukaryotes) translocon. A common mechanism then guides nascent transmembrane helices (TMHs) through the Sec complex, mediated by associated membrane insertion factors. In bacteria, the membrane protein 'insertase' YidC ushers TMHs through a lateral gate of SecY to the bilayer. YidC is also thought to incorporate proteins into the membrane independently of SecYEG. Here, we show the bacterial holo-translocon (HTL) - a supercomplex of SecYEG-SecDF-YajC-YidC - is a bona fide resident of the Escherichia coli inner membrane. Moreover, when compared with SecYEG and YidC alone, the HTL is more effective at the insertion and assembly of a wide range of membrane protein substrates, including those hitherto thought to require only YidC.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana/metabolismo , Espectrometria de Fluorescência/métodos
9.
Proc Natl Acad Sci U S A ; 111(13): 4844-9, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24550475

RESUMO

The SecY/61 complex forms the protein-channel component of the ubiquitous protein secretion and membrane protein insertion apparatus. The bacterial version SecYEG interacts with the highly conserved YidC and SecDF-YajC subcomplex, which facilitates translocation into and across the membrane. Together, they form the holo-translocon (HTL), which we have successfully overexpressed and purified. In contrast to the homo-dimeric SecYEG, the HTL is a hetero-dimer composed of single copies of SecYEG and SecDF-YajC-YidC. The activities of the HTL differ from the archetypal SecYEG complex. It is more effective in cotranslational insertion of membrane proteins and the posttranslational secretion of a ß-barreled outer-membrane protein driven by SecA and ATP becomes much more dependent on the proton-motive force. The activity of the translocating copy of SecYEG may therefore be modulated by association with different accessory subcomplexes: SecYEG (forming SecYEG dimers) or SecDF-YajC-YidC (forming the HTL). This versatility may provide a means to refine the secretion and insertion capabilities according to the substrate. A similar modularity may also be exploited for the translocation or insertion of a wide range of substrates across and into the endoplasmic reticular and mitochondrial membranes of eukaryotes.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de Membrana/metabolismo , Complexos Multiproteicos/metabolismo , Força Próton-Motriz , Trifosfato de Adenosina/farmacologia , Reagentes de Ligações Cruzadas/metabolismo , Escherichia coli/efeitos dos fármacos , Proteínas de Escherichia coli/isolamento & purificação , Proteínas de Membrana/isolamento & purificação , Modelos Biológicos , Ligação Proteica/efeitos dos fármacos , Estabilidade Proteica/efeitos dos fármacos , Subunidades Proteicas/metabolismo , Transporte Proteico/efeitos dos fármacos , Força Próton-Motriz/efeitos dos fármacos , Ribossomos/efeitos dos fármacos , Ribossomos/metabolismo
10.
Hepatology ; 61(6): 1896-907, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25565581

RESUMO

UNLABELLED: Autophagy is a central mechanism by which hepatocytes catabolize lipid droplets (LDs). Currently, the regulatory mechanisms that control this important process are poorly defined. The small guanosine triphosphatase (GTPase) Rab7 has been implicated in the late endocytic pathway and is known to associate with LDs, although its role in LD breakdown has not been tested. In this study, we demonstrate that Rab7 is indispensable for LD breakdown ("lipophagy") in hepatocytes subjected to nutrient deprivation. Importantly, Rab7 is dramatically activated in cells placed under nutrient stress; this activation is required for the trafficking of both multivesicular bodies and lysosomes to the LD surface during lipophagy, resulting in the formation of a lipophagic "synapse." Depletion of Rab7 leads to gross morphological changes of multivesicular bodies, lysosomes, and autophagosomes, consequently leading to attenuation of hepatocellular lipophagy. CONCLUSION: These findings provide additional support for the role of autophagy in hepatocellular LD catabolism while implicating the small GTPase Rab7 as a key regulatory component of this essential process.


Assuntos
Autofagia , Hepatócitos/metabolismo , Gotículas Lipídicas/metabolismo , Lipólise , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Linhagem Celular Tumoral , Humanos , Lisossomos/fisiologia , Corpos Multivesiculares/fisiologia , proteínas de unión al GTP Rab7
12.
J Bacteriol ; 193(11): 2814-25, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21441503

RESUMO

The dimeric OspC/Vsp family surface lipoproteins of Borrelia spirochetes are crucial to the transmission and persistence of Lyme borreliosis and tick-borne relapsing fever. However, the requirements for their proper surface display remained undefined. In previous studies, we showed that localization of Borrelia burgdorferi monomeric surface lipoprotein OspA was dependent on residues in the N-terminal "tether" peptide. Here, site-directed mutagenesis of the B. burgdorferi OspC tether revealed two distinct regions affecting either release from the inner membrane or translocation through the outer membrane. Determinants of both of these steps appear consolidated within a single region of the Borrelia turicatae Vsp1 tether. Periplasmic OspC mutants still were able to form dimers. Their localization defect could be rescued by the addition of an apparently structure-destabilizing C-terminal epitope tag but not by coexpression with wild-type OspC. Furthermore, disruption of intermolecular Vsp1 salt bridges blocked dimerization but not surface localization of the resulting Vsp1 monomers. Together, these results suggest that Borrelia OspC/Vsp1 surface lipoproteins traverse the periplasm and the outer membrane as unfolded monomeric intermediates and assemble into their functional multimeric folds only upon reaching the spirochetal surface.


Assuntos
Antígenos de Bactérias/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Borrelia burgdorferi/metabolismo , Lipoproteínas/metabolismo , Antígenos de Bactérias/genética , Proteínas da Membrana Bacteriana Externa/genética , Borrelia burgdorferi/genética , Lipoproteínas/genética , Mutagênese Sítio-Dirigida , Mapeamento de Interação de Proteínas , Multimerização Proteica , Sinais Direcionadores de Proteínas , Transporte Proteico
13.
Mol Microbiol ; 76(5): 1266-78, 2010 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-20398211

RESUMO

Borrelia burgdorferi surface lipoproteins are essential to the pathogenesis of Lyme borreliosis, but the mechanisms responsible for their localization are only beginning to emerge. We have previously demonstrated the critical nature of the amino-terminal 'tether' domain of the mature lipoprotein for sorting a fluorescent reporter to the Borrelia cell surface. Here, we show that individual deletion of four contiguous residues within the tether of major surface lipoprotein OspA results in its inefficient translocation across the Borrelia outer membrane. Intriguingly, C-terminal epitope tags of these N-terminal deletion mutants were selectively surface-exposed. Fold-destabilizing C-terminal point mutations and deletions did not block OspA secretion, but rather restored one of the otherwise periplasmic tether mutants to the bacterial surface. Together, these data indicate that disturbance of a confined tether feature leads to premature folding of OspA in the periplasm and thereby prevents secretion through the outer membrane. Furthermore, they suggest that OspA emerges tail-first on the bacterial surface, yet independent of a specific C-terminal targeting peptide sequence.


Assuntos
Antígenos de Superfície/química , Antígenos de Superfície/metabolismo , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/metabolismo , Vacinas Bacterianas/química , Vacinas Bacterianas/metabolismo , Borrelia burgdorferi/imunologia , Membrana Celular/metabolismo , Lipoproteínas/química , Lipoproteínas/metabolismo , Conformação Proteica , Sequência de Aminoácidos , Animais , Antígenos de Superfície/genética , Proteínas da Membrana Bacteriana Externa/genética , Vacinas Bacterianas/genética , Borrelia burgdorferi/patogenicidade , Epitopos/imunologia , Lipoproteínas/genética , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Dobramento de Proteína , Transporte Proteico/fisiologia , Alinhamento de Sequência
14.
BMC Microbiol ; 10: 277, 2010 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-21047413

RESUMO

BACKGROUND: In our previous studies on lipoprotein secretion in the Lyme disease spirochete Borrelia burgdorferi, we used monomeric red fluorescent protein 1 (mRFP1) fused to specifically mutated outer surface protein A (OspA) N-terminal lipopeptides to gather first insights into lipoprotein sorting determinants. OspA:mRFP1 fusions could be detected by epifluorescence microscopy both in the periplasm and on the bacterial surface. To build on these findings and to complement the prior targeted mutagenesis approach, we set out to develop a screen to probe a random mutagenesis expression library for mutants expressing differentially localized lipoproteins. RESULTS: A Glu-Asp codon pair in the inner membrane-localized OspA20:mRFP1 fusion was chosen for mutagenesis since the two negative charges were previously shown to define the phenotype. A library of random mutants in the two codons was generated and expressed in B. burgdorferi. In situ surface proteolysis combined with fluorescence activated cell sorting (FACS) was then used to screen for viable spirochetes expressing alternative subsurface OspA:mRFP1 fusions. Analysis of 93 clones randomly picked from a sorted cell population identified a total of 43 distinct mutants. Protein localization assays indicated a significant enrichment in the selected subsurface phenotype. Interestingly, a majority of the subsurface mutant proteins localized to the outer membrane, indicating their impairment in "flipping" through the outer membrane to the spirochetal surface. OspA20:mRFP1 remained the protein most restricted to the inner membrane. CONCLUSIONS: Together, these results validate this FACS-based screen for lipoprotein localization and suggest a rather specific inner membrane retention mechanism involving membrane anchor-proximal negative charge patches in this model B. burgdorferi lipoprotein system.


Assuntos
Antígenos de Superfície/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Vacinas Bacterianas/metabolismo , Borrelia burgdorferi/metabolismo , Citometria de Fluxo/métodos , Lipoproteínas/metabolismo , Doença de Lyme/microbiologia , Antígenos de Superfície/genética , Proteínas da Membrana Bacteriana Externa/genética , Vacinas Bacterianas/genética , Borrelia burgdorferi/citologia , Borrelia burgdorferi/genética , Lipoproteínas/genética , Transporte Proteico
15.
Liver Res ; 3(3-4): 185-190, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33664985

RESUMO

The rising incidence of alcohol-related liver disease (ALD) demands making urgent progress in understanding the fundamental molecular basis of alcohol-related hepatocellular damage. One of the key early events accompanying chronic alcohol usage is the accumulation of lipid droplets (LDs) in the hepatocellular cytoplasm. LDs are far from inert sites of neutral lipid storage; rather, they represent key organelles that play vital roles in the metabolic state of the cell. In this review, we will examine the biology of these structures and outline recent efforts being made to understand the effects of alcohol exposure on the biogenesis, catabolism, and motility of LDs and how their dynamic nature is perturbed in the context of ALD.

16.
J Cell Biol ; 218(7): 2096-2112, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31201265

RESUMO

The liver performs numerous vital functions, including the detoxification of blood before access to the brain while simultaneously secreting and internalizing scores of proteins and lipids to maintain appropriate blood chemistry. Furthermore, the liver also synthesizes and secretes bile to enable the digestion of food. These diverse attributes are all performed by hepatocytes, the parenchymal cells of the liver. As predicted, these cells possess a remarkably well-developed and complex membrane trafficking machinery that is dedicated to moving specific cargos to their correct cellular locations. Importantly, while most epithelial cells secrete nascent proteins directionally toward a single lumen, the hepatocyte secretes both proteins and bile concomitantly at its basolateral and apical domains, respectively. In this Beyond the Cell review, we will detail these central features of the hepatocyte and highlight how membrane transport processes play a key role in healthy liver function and how they are affected by disease.


Assuntos
Membrana Celular/genética , Hepatócitos/metabolismo , Proteínas de Membrana Transportadoras/genética , Transporte Proteico/genética , Animais , Membrana Celular/metabolismo , Movimento Celular/genética , Humanos , Fígado/metabolismo , Proteínas de Membrana Transportadoras/química , Tecido Parenquimatoso/metabolismo
17.
J Cell Biol ; 218(10): 3320-3335, 2019 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-31391210

RESUMO

Lipid droplet (LD) catabolism in hepatocytes is mediated by a combination of lipolysis and a selective autophagic mechanism called lipophagy, but the relative contributions of these seemingly distinct pathways remain unclear. We find that inhibition of lipolysis, lipophagy, or both resulted in similar overall LD content but dramatic differences in LD morphology. Inhibition of the lipolysis enzyme adipose triglyceride lipase (ATGL) resulted in large cytoplasmic LDs, whereas lysosomal inhibition caused the accumulation of numerous small LDs within the cytoplasm and degradative acidic vesicles. Combined inhibition of ATGL and LAL resulted in large LDs, suggesting that lipolysis targets these LDs upstream of lipophagy. Consistent with this, ATGL was enriched in larger-sized LDs, whereas lipophagic vesicles were restricted to small LDs as revealed by immunofluorescence, electron microscopy, and Western blot of size-separated LDs. These findings provide new evidence indicating a synergistic relationship whereby lipolysis targets larger-sized LDs to produce both size-reduced and nascently synthesized small LDs that are amenable for lipophagic internalization.


Assuntos
Hepatócitos/citologia , Hepatócitos/metabolismo , Gotículas Lipídicas/metabolismo , Lipólise , Animais , Feminino , Ratos , Ratos Sprague-Dawley , Triglicerídeos/análise , Triglicerídeos/metabolismo
18.
Methods Mol Biol ; 1586: 279-290, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28470612

RESUMO

A modular approach for balanced overexpression of recombinant multiprotein complexes in E. coli is described, with the prokaryotic protein secretase/insertase complex, the SecYEG-SecDFYajC-YidC holotranslocon (HTL), used as an example. This procedure has been implemented here in the ACEMBL system. The protocol details the design principles of the monocistronic or polycistronic DNA constructs, the expression and purification of functional HTL and its association with translating ribosome nascent chain (RNC) complexes into a RNC-HTL supercomplex.


Assuntos
Escherichia coli/genética , Complexos Multiproteicos/genética , Canais de Translocação SEC/genética , Clonagem Molecular/métodos , DNA Recombinante/genética , Proteínas de Escherichia coli/genética , Proteínas de Membrana Transportadoras/genética , Plasmídeos/genética , Proteínas Recombinantes/genética , Ribossomos/genética , Regulação para Cima
19.
Hepatol Commun ; 1(5): 359-369, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29109982

RESUMO

The liver is a central fat-storage organ, making it especially susceptible to steatosis as well as subsequent inflammation and cirrhosis. The mechanisms by which the liver mobilizes stored lipid for energy production, however, remain incompletely defined. The catabolic process of autophagy, a well-known process of bulk cytoplasmic recycling and cellular self-regeneration, is a central regulator of lipid metabolism in the liver. In the past decade, numerous studies have examined a selective form of autophagy that specifically targets a unique neutral lipid storage organelle, the lipid droplet, to better understand the function for this process in hepatocellular fatty acid metabolism. In the liver (and other oxidative tissues), this specialized pathway, lipophagy, likely plays as important of a role in lipid turnover as conventional lipase-driven lipolysis. In this review, we will highlight several recent studies that have contributed to our understanding about the regulation and effects of hepatic lipophagy.

20.
Hepatol Commun ; 1(2): 140-152, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-29404450

RESUMO

Alcohol consumption is a well-established risk factor for the onset and progression of fatty liver disease. An estimated 90% of heavy drinkers are thought to develop significant liver steatosis. For these reasons, an increased understanding of the molecular basis for alcohol-induced hepatic steatosis is important. It has become clear that autophagy, a catabolic process of intracellular degradation and recycling, plays a key role in hepatic lipid metabolism. We have shown that Rab7, a small guanosine triphosphatase known to regulate membrane trafficking, acts as a key orchestrator of hepatocellular lipophagy, a selective form of autophagy in which lipid droplets (LDs) are specifically targeted for turnover by the autophagic machinery. Nutrient starvation results in Rab7 activation on the surface of the LD and lysosomal compartments, resulting in the mobilization of triglycerides stored within the LDs for energy production. Here, we examine whether the steatotic effects of alcohol exposure are a result of perturbations to the Rab7-mediated lipophagic pathway. Rats chronically fed an ethanol-containing diet accumulated significantly higher levels of fat in their hepatocytes. Interestingly, hepatocytes isolated from these ethanol-fed rats contained juxtanuclear lysosomes that exhibited impaired motility. These changes are similar to those we observed in Rab7-depleted hepatocytes. Consistent with these defects in the lysosomal compartment, we observed a marked 80% reduction in Rab7 activity in cultured hepatocytes as well as a complete block in starvation-induced Rab7 activation in primary hepatocytes isolated from chronic ethanol-fed animals. Conclusion: A mechanism is supported whereby ethanol exposure inhibits Rab7 activity, resulting in the impaired transport, targeting, and fusion of the autophagic machinery with LDs, leading to an accumulation of hepatocellular lipids and hepatic steatosis. (Hepatology Communications 2017;1:140-152).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA