Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Int J Mol Sci ; 19(11)2018 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-30423942

RESUMO

The development of new and better implant materials adapted to osteoporotic bone is still urgently required. Therefore, osteoporotic muscarinic acetylcholine receptor M3 (M3 mAChR) knockout (KO) and corresponding wild type (WT) mice underwent osteotomy in the distal femoral metaphysis. Fracture gaps were filled with a pasty α-tricalcium phosphate (α-TCP)-based hydroxyapatite (HA)-forming bone cement containing mesoporous bioactive CaP-SiO2 glass particles (cement/MBG composite) with or without Brain-Derived Neurotrophic Factor (BDNF) and healing analyzed after 35 days. Histologically, bone formation was significantly increased in WT mice that received the BDNF-functionalized cement/MBG composite compared to control WT mice without BDNF. Cement/MBG composite without BDNF increased bone formation in M3 mAChR KO mice compared to equally treated WT mice. Mass spectrometric imaging showed that the BDNF-functionalized cement/MBG composite implanted in M3 mAChR KO mice was infiltrated by newly formed tissue. Leukocyte numbers were significantly lower in M3 mAChR KO mice treated with BDNF-functionalized cement/MBG composite compared to controls without BDNF. C-reactive protein (CRP) concentrations were significantly lower in M3 mAChR KO mice that received the cement/MBG composite without BDNF when compared to WT mice treated the same. Whereas alkaline phosphatase (ALP) concentrations in callus were significantly increased in M3 mAChR KO mice, ALP activity was significantly higher in WT mice. Due to a stronger effect of BDNF in non osteoporotic mice, higher BDNF concentrations might be needed for osteoporotic fracture healing. Nevertheless, the BDNF-functionalized cement/MBG composite promoted fracture healing in non osteoporotic bone.


Assuntos
Cimentos Ósseos/uso terapêutico , Fator Neurotrófico Derivado do Encéfalo/uso terapêutico , Fêmur/patologia , Consolidação da Fratura/efeitos dos fármacos , Vidro/química , Fraturas por Osteoporose/tratamento farmacológico , Fosfatase Alcalina/metabolismo , Animais , Cimentos Ósseos/farmacologia , Calo Ósseo/efeitos dos fármacos , Calo Ósseo/enzimologia , Calo Ósseo/patologia , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Proteína C-Reativa/metabolismo , Modelos Animais de Doenças , Feminino , Fêmur/diagnóstico por imagem , Fêmur/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fraturas por Osteoporose/sangue , Fraturas por Osteoporose/diagnóstico por imagem , Fraturas por Osteoporose/patologia , Porosidade , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptor Muscarínico M3/metabolismo , Espectrometria por Raios X , Microtomografia por Raio-X
2.
Med Sci Monit ; 20: 1942-9, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25317537

RESUMO

BACKGROUND: The aim of the current study was to measure and compare the effect of various biomaterials for the healing of osteoporotic bone defects in the rat femur using 18F-sodium fluoride dPET-CT. MATERIAL AND METHODS: Osteoporosis was induced by ovariectomy and a calcium-restricted diet. After 3 months, rats were operated on to create a 4-mm wedge-shaped defect in the distal metaphyseal femur. Bone substitution materials of calcium phosphate cement (CPC), composites of collagen and silica, and iron foams with interconnecting pores were inserted. Strontium or bisphosphonate, which are well known for having positive effects in osteoporosis treatment, were added into the materials. Eighteen weeks after osteoporosis induction and 6 weeks following femoral surgery, dPET-CT studies scan were performed with 18F-Sodium Fluoride. Standardized uptake values (SUVs) and a 2-tissue compartmental learning-machine model (K1-k4, vessel density [VB], influx [ki]) were used for quantitative analysis. RESULTS: k3, reflecting the formation of fluoroapatite, revealed a statistically significant increase at the biomaterial-bone interface due to the Sr release from strontium-modified calcium phosphate cement (SrCPC) compared to CPC, which demonstrated enhanced new bone formation. In addition, k3 as measured in the porous scaffold silica/collagen xerogel (Sc-B30), showed a significant increase based on Wilcoxon rank-sum test (p<0.05) as compared with monolithic silica/collagen xerogel (B30) in the defect region. Furthermore, ki, reflecting the net plasma clearance of tracer to bone mineral measured in the iron foam with coating of the bisphosphonate zoledronic acid (Fe-BP), was enhanced as compared with plain iron foam (Fe) in the defect region. CONCLUSIONS: k3 was the most significant parameter for the characterization of healing processes and revealed the best differentiation between the 2 different biomaterials. PET scanning using 18F-sodium fluoride seems to be a sensitive and useful method for evaluation of bone healing after replacement with these biomaterials.


Assuntos
Materiais Biocompatíveis , Osteoporose/patologia , Fluoreto de Sódio/administração & dosagem , Animais , Modelos Animais de Doenças , Feminino , Imagem Multimodal , Tomografia por Emissão de Pósitrons , Ratos , Ratos Sprague-Dawley , Tomografia Computadorizada por Raios X
3.
Anal Bioanal Chem ; 405(27): 8769-80, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24026517

RESUMO

Time-of-flight secondary ion mass spectrometry (ToF-SIMS) is a well-established technique in materials science, but is now increasingly applied also in the life sciences. Here, we demonstrate the potential of this analytical technique for use in the development of new bone implant materials. We tracked strontium-enriched calcium phosphate cements, which were developed for the treatment of osteoporotic bone, from in vitro to in vivo. Essentially, the spatial distribution of strontium in two different types of strontium-modified calcium phosphate cements is analysed by SIMS depth profiling. To gain information about the strontium release kinetics, the cements were immersed for 3, 7, 14 and 21 days in α-MEM and tris(hydroxymethyl)-aminomethane solution and analysed afterwards by ToF-SIMS depth profiling. For cements stored in α-MEM solution an inhibited strontium release was observed. By using principal component analysis to evaluate TOF-SIMS surface spectra, we are able to prove the adsorption of proteins on the cement surface, which inhibit the release kinetics. Cell experiments with human osteoblast-like cells cultured on the strontium-modified cements and subsequent mass spectrometric analysis of the mineralised extracellular matrix (mECM) prove clearly that strontium is incorporated into the mECM of the osteoblast-like cells. Finally, in an animal experiment, the strontium-doped cements are implanted into the femur of osteoporotic rats. After 6 weeks, only a slight release of strontium was found in the vicinity of the implant material. By using ToF-SIMS, it is proven that strontium is localised in regions of newly formed bone but also within the pre-existing tissue.


Assuntos
Cimentos Ósseos/farmacologia , Fêmur/efeitos dos fármacos , Osteoporose/terapia , Fosfatos/análise , Estrôncio/análise , Animais , Cimentos Ósseos/química , Fosfatos de Cálcio/análise , Fosfatos de Cálcio/química , Fosfatos de Cálcio/metabolismo , Células Cultivadas , Difusão , Feminino , Fêmur/química , Fêmur/metabolismo , Fêmur/patologia , Cinética , Compostos Orgânicos/química , Osteoblastos/citologia , Osteoblastos/metabolismo , Osteoporose/metabolismo , Osteoporose/patologia , Ovariectomia , Fosfatos/química , Fosfatos/metabolismo , Análise de Componente Principal , Próteses e Implantes , Ratos Sprague-Dawley , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Estrôncio/química , Estrôncio/metabolismo
4.
Bioengineering (Basel) ; 10(10)2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37892933

RESUMO

In this study, the in vitro and in vivo bone formation behavior of mesoporous bioactive glass (MBG) particles incorporated in a pasty strontium-containing calcium phosphate bone cement (pS100G10) was studied in a metaphyseal fracture-defect model in ovariectomized rats and compared to a plain pasty strontium-containing calcium phosphate bone cement (pS100) and control (empty defect) group, respectively. In vitro testing showed good cytocompatibility on human preosteoblasts and ongoing dissolution of the MBG component. Neither the released strontium nor the BMG particles from the pS100G10 had a negative influence on cell viability. Forty-five female Sprague-Dawley rats were randomly assigned to three different treatment groups: (1) pS100 (n = 15), (2) pS100G10 (n = 15), and (3) empty defect (n = 15). Twelve weeks after bilateral ovariectomy and multi-deficient diet, a 4 mm wedge-shaped fracture-defect was created at the metaphyseal area of the left femur in all animals. The originated fracture-defect was substituted with pS100 or pS100G10 or left empty. After six weeks, histomorphometrical analysis revealed a statistically significant higher bone volume/tissue volume ratio in the pS100G10 group compared to the pS100 (p = 0.03) and empty defect groups (p = 0.0001), indicating enhanced osteoconductivity with the incorporation of MBG. Immunohistochemistry revealed a significant decrease in the RANKL/OPG ratio for pS100 (p = 0.004) and pS100G10 (p = 0.003) compared to the empty defect group. pS100G10 showed a statistically higher expression of BMP-2. In addition, a statistically significant higher gene expression of alkaline phosphatase, osteoprotegerin, collagen1a1, collagen10a1 with a simultaneous decrease in RANKL, and carbonic anhydrase was seen in the pS100 and pS100G10 groups compared to the empty defect group. Mass spectrometric imaging by time-of-flight secondary ion mass spectrometry (ToF-SIMS) showed the release of Sr2+ ions from both pS100 and pS100G10, with a gradient into the interface region. ToF-SIMS imaging also revealed that resorption of the MBG particles allowed for new bone formation in cement pores. In summary, the current work shows better bone formation of the injectable pasty strontium-containing calcium phosphate bone cement with incorporated mesoporous bioactive glass compared to the bioactive-free bone cement and empty defects and can be considered for clinical application for osteopenic fracture defects in the future.

5.
Weed Res ; 63(1): 1-11, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37082111

RESUMO

Over the last 30 years, many studies have surveyed weed vegetation on arable land. The 'Arable Weeds and Management in Europe' (AWME) database is a collection of 36 of these surveys and the associated management data. Here, we review the challenges associated with combining disparate datasets and explore some of the opportunities for future research that present themselves thanks to the AWME database. We present three case studies repeating previously published national scale analyses with data from a larger spatial extent. The case studies, originally done in France, Germany and the UK, explore various aspects of weed ecology (community composition, management and environmental effects and within-field distributions) and use a range of statistical techniques (canonical correspondence analysis, redundancy analysis and generalised linear mixed models) to demonstrate the utility and versatility of the AWME database. We demonstrate that (i) the standardisation of abundance data to a common measure, before the analysis of the combined dataset, has little impact on the outcome of the analyses, (ii) the increased extent of environmental or management gradients allows for greater confidence in conclusions and (iii) the main conclusions of analyses done at different spatial scales remain consistent. These case studies demonstrate the utility of a Europe-wide weed survey database, for clarifying or extending results obtained from studies at smaller scales. This Europe-wide data collection offers many more opportunities for analysis that could not be addressed in smaller datasets; including questions about the effects of climate change, macro-ecological and biogeographical issues related to weed diversity as well as the dominance or rarity of specific weeds in Europe.

6.
ACS Appl Mater Interfaces ; 14(4): 4959-4968, 2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35041377

RESUMO

A limiting factor in large bone defect regeneration is the slow and disorganized formation of a functional vascular network in the defect area, often resulting in delayed healing or implant failure. To overcome this, strategies that induce angiogenic processes should be combined with potent bone graft substitutes in new bone regeneration approaches. To this end, we describe a unique approach to immobilize the pro-angiogenic growth factor VEGF165 in its native state on the surface of nanosized bioactive glass particles (nBGs) via a binding peptide (PR1P). We demonstrate that covalent coupling of the peptide to amine functional groups grafted on the nBG surface allows immobilization of VEGF with high efficiency and specificity. The amount of coupled peptide could be controlled by varying amine density, which eventually allows tailoring the amount of bound VEGF within a physiologically effective range. In vitro analysis of endothelial cell tube formation in response to VEGF-carrying nBG confirmed that the biological activity of VEGF is not compromised by the immobilization. Instead, comparable angiogenic stimulation was found for lower doses of immobilized VEGF compared to exogenously added VEGF. The described system, for the first time, employs a binding peptide for growth factor immobilization on bioactive glass nanoparticles and represents a promising strategy to overcome the problem of insufficient neovascularization in large bone defect regeneration.


Assuntos
Materiais Biocompatíveis/química , Nanopartículas/química , Peptídeos/química , Fator A de Crescimento do Endotélio Vascular/química , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Vidro/química , Humanos , Teste de Materiais , Tamanho da Partícula , Propriedades de Superfície , Fator A de Crescimento do Endotélio Vascular/metabolismo
7.
Nanomaterials (Basel) ; 12(17)2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36079956

RESUMO

Nanoparticles such as mesoporous bioactive glasses (MBGs) and mesoporous silica nanoparticles (MSN) are promising for use in bone regeneration applications due to their inherent bioactivity. Doping silica nanoparticles with bioinorganic ions could further enhance their biological performance. For example, zinc (Zn) is often used as an additive because it plays an important role in bone formation and development. Local delivery and dose control are important aspects of its therapeutic application. In this work, we investigated how Zn incorporation in MSN and MBG nanoparticles impacts their ability to promote human mesenchymal stem cell (hMSC) osteogenesis and mineralization in vitro. Zn ions were incorporated in three different ways; within the matrix, on the surface or in the mesopores. The nanoparticles were further coated with a calcium phosphate (CaP) layer to allow pH-responsive delivery of the ions. We demonstrate that the Zn incorporation amount and ion release profile affect the nanoparticle's ability to stimulate osteogenesis in hMSCs. Specifically, we show that the nanoparticles that contain rapid Zn release profiles and a degradable silica matrix were most effective in inducing hMSC differentiation. Moreover, cells cultured in the presence of nanoparticle-containing media resulted in the highest induction of alkaline phosphate (ALP) activity, followed by culturing hMSC on nanoparticles immobilized on the surface as films. Exposure to nanoparticle-conditioned media did not increase ALP activity in hMSCs. In summary, Zn incorporation mode and nanoparticle application play an important role in determining the bioactivity of ion-doped silica nanoparticles.

8.
Biomater Res ; 25(1): 6, 2021 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-33743840

RESUMO

BACKGROUND: Biomineralized collagen, consisting of fibrillar type-I collagen with embedded hydroxyapatite mineral, is a bone-mimicking material with potential application as a bone graft substitute. Despite the chemical and structural similarity with bone extracellular matrix, no evidence exists so far that biomineralized collagen can be resorbed by osteoclasts. The aim of the current study was to induce resorption of biomineralized collagen by osteoclasts by a two-fold modification: increasing the calcium phosphate content and introducing cobalt ions (Co2+), which have been previously shown to stimulate resorptive activity of osteoclasts. METHODS: To this end, we produced biomineralized collagen membranes and coated them with a cobalt-containing calcium phosphate (CoCaP). Human osteoclasts, derived from CD14+ monocytes from peripheral blood, were differentiated directly on the membranes. Upon fluorescent staining of nuclei, F-actin and tartrate-resistant alkaline phosphatase, the cells were analyzed by laser confocal microscopy. Their resorption capacity was assessed by scanning electron microscopy (SEM), as well as indirectly quantified by measuring the release of calcium ions into cell culture medium. RESULTS: The CoCaP coating increased the mineral content of the membranes by 4 wt.% and their elastic modulus from 1 to 10 MPa. The coated membranes showed a sustained Co2+ release in water of about 7 nM per 2 days. In contrast to uncoated membranes, on CoCaP-coated biomineralized collagen membranes, osteoclasts sporadically formed actin rings, and induced formation of resorption lacunae, as observed by SEM and confirmed by increase in Ca2+ concentration in cell culture medium. The effect of the CoCaP layer on osteoclast function is thought to be mainly caused by the increase of membrane stiffness, although the effect of Co2+, which was released in very low amounts, cannot be fully excluded. CONCLUSIONS: This work shows the potential of this relatively simple approach to induce osteoclast resorption of biomineralized collagen, although the extent of osteoclast resorption was limited, and the method needs further optimization. Moreover, the coating method is suitable for incorporating bioactive ions of interest into biomineralized collagen, which is typically not possible using the common biomineralization methods, such as polymer-induced liquid precursor method.

9.
Pharmaceutics ; 12(9)2020 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-32847150

RESUMO

The proteasome inhibitor bortezomib (BZM) is one of the most potent anti-cancer drugs in the therapy of multiple myeloma. In this study, an adhesive drug delivery system (DDS) for BZM was developed. Therefore, we extended the present DDS concept of polyelectrolyte complex (PEC) nanoparticle (NP) based on electrostatic interactions between charged drug and polyelectrolyte (PEL) to a DDS concept involving covalent bonding between PEL and uncharged drugs. For this purpose, 3,4-dihydroxyphenyl acetic acid (DOPAC) was polymerized via an oxidatively induced coupling reaction. This novel chemo-reactive polyanion PDOPAC is able to temporarily bind boronic acid groups of BZM via its catechol groups, through esterification. PDOPAC was admixed to poly(l-glutamic acid) (PLG) and poly(l-lysine) (PLL) forming a redispersible PEC NP system after centrifugation, which is advantageous for further colloid and BZM loading processing. It was found that the loading capacity (LC) strongly depends on the PDOPAC and catechol content in the PEC NP. Furthermore, the type of loading and the net charge of the PEC NP affect LC and the residual content (RC) after release. Release experiments of PDOPAC/PEC coatings were performed at medically relevant bone substitute materials (calcium phosphate cement and titanium niobium alloy) whereby the DDS worked independently of the surface properties. Additionally, in contrast to electrostatically based drug loading the release behavior of covalently bound, uncharged BZM is independent of the ionic strength (salt content) in the release medium.

10.
Mater Sci Eng C Mater Biol Appl ; 108: 110425, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31923935

RESUMO

Beta-type Ti-based alloys are promising new materials for bone implants owing to their excellent mechanical biofunctionality and biocompatibility. For treatment of fractures in case of systemic diseases like osteoporosis the generation of implant surfaces which actively support the problematic bone healing is a most important aspect. This work aimed at developing suitable approaches for electrodeposition of Sr-substituted hydroxyapatite (Srx-HAp) coatings onto Ti-45Nb. Potentiodynamic polarization measurements in electrolytes with 1.67 mmol/L Ca(NO3)2, which was substituted by 0, 10, 50 and 100% Sr(NO3)2, and 1 mmol/L NH4H2PO4 at 333 K revealed the basic reaction steps for OH- and PO43- formation needed for the chemical precipitation of Srx-HAp. Studies under potentiostatic control confirmed that partial or complete substitution of Ca2+- by Sr2+-ions in solution has a significant effect on the complex reaction process. High Sr2+-ion contents yield intermediate phases and a subsequent growth of more refined Srx-HAp coatings. Upon galvanostatic pulse-deposition higher reaction rates are controlled and in all electrolytes very fine needle-like crystalline coatings are obtained. With XRD the incorporation of Sr-species in the hexagonal HAp lattice is evidenced. Coatings formed in electrolytes with 10 and 50% Sr-nitrate were chemically analyzed with EDX mapping and GD-OES depth profiling. Only a fraction of the Sr-ions in solution is incorporated into the Srx-HAp coatings. Therein, the Sr-distribution is laterally homogeneous but non-homogeneous along the cross-section. Increasing Sr-content retards the coating thickness growth. Most promising coatings formed in the electrolyte with 10% Sr-nitrate were employed for Ca, P and Sr release analysis in Tris-Buffered Saline (150 mM NaCl, pH 7.6) at 310 K. At a sample surface: solution volume ratio of 1:200, after 24 h the amount of released Sr-ions was about 30-35% of that determined in the deposited Srx-HAp coating. In vitro studies with human bone marrow stromal cells (hBMSC) revealed that the released Sr-ions led to a significantly enhanced cell proliferation and osteogenic differentiation and that the Sr-HAp surface supported cell adhesion indicating its excellent cytocompatibility.


Assuntos
Ligas/química , Durapatita/química , Galvanoplastia/métodos , Estrôncio/química , Ligas/efeitos adversos , Durapatita/efeitos adversos , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos
11.
Bioprocess Biosyst Eng ; 32(5): 603-6, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19082632

RESUMO

Rhodobacter capsulatus was used for the phototrophic hydrogen production on effluent solution derived from the thermophilic fermentation of Miscanthus hydrolysate by Thermotoga neapolitana. Pretreatments such as centrifugation, dilution, buffer addition, pH adjustment and sterilization were suggested for the effluent before being fed to the photofermentation. Batch-wise experiments showed that R. capsulatus grows and produces hydrogen on the pretreated effluent solution. Moreover, it was found that the hydrogen yield increased from 0.3 to 1.0 L/L(culture) by addition of iron to the effluent solution.


Assuntos
Archaea/fisiologia , Reatores Biológicos/microbiologia , Metabolismo dos Carboidratos/fisiologia , Hidrogênio/metabolismo , Resíduos Industriais/prevenção & controle , Rhodobacter capsulatus/metabolismo , Esgotos/microbiologia , Fermentação , Luz , Fotobiologia/métodos , Rhodobacter capsulatus/efeitos da radiação
12.
J R Soc Interface ; 16(151): 20180638, 2019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30958183

RESUMO

Next-generation bone implants will be functionalized with drugs for stimulating bone growth. Modelling of drug release by such functionalized biomaterials and drug dispersion into bone can be used as predicting tool for biomaterials testing in future. Therefore, the determination of experimental parameters to describe and simulate drug release in bone is essential. Here, we focus on Sr2+ transport and quantification in cortical rat bone. Sr2+ dose-dependently stimulates bone-building osteoblasts and inhibits bone-resorbing osteoclasts. It should be preferentially applied in the case of bone fracture in the context of osteoporotic bone status. Transport properties of cortical rat bone were investigated by dipping experiments of bone sections in aqueous Sr2+ solution followed by time-of-flight secondary ion mass spectrometry (ToF-SIMS) depth profiling. Data evaluation was carried out by fitting a suitable mathematical diffusion equation to the experimental data. An average diffusion coefficient of D = (1.68 ± 0.57) · 10-13 cm2 s-1 for healthy cortical bone was obtained. This value differed only slightly from the value of D = (4.30 ± 1.43) · 10-13 cm2 s-1 for osteoporotic cortical bone. Transmission electron microscopy investigations revealed a comparable nano- and ultrastructure for both types of bone status. Additionally, Sr2+-enriched mineralized collagen standards were prepared for ToF-SIMS quantification of Sr2+ content. The obtained calibration curve was used for Sr2+ quantification in cortical and trabecular bone in real bone sections. The results allow important insights regarding the Sr2+ transport properties in healthy and osteoporotic bone and can ultimately be used to perform a simulation of drug release and mobility in bone.


Assuntos
Osso Cortical , Osteoblastos , Osteoclastos , Osteogênese/efeitos dos fármacos , Espectrometria de Massa de Íon Secundário , Estrôncio , Animais , Osso Cortical/metabolismo , Osso Cortical/ultraestrutura , Feminino , Microscopia Eletrônica de Transmissão , Osteoblastos/metabolismo , Osteoblastos/ultraestrutura , Osteoclastos/metabolismo , Osteoclastos/ultraestrutura , Ratos , Ratos Sprague-Dawley , Estrôncio/farmacocinética , Estrôncio/farmacologia
13.
Biomed Mater ; 14(2): 025004, 2019 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-30530938

RESUMO

Given the important effects of strontium and silicon on cells of the bone as well as the increasing incidence of osteoporotic fractures, calcium phosphate-based bone cements containing silicon and strontium might represent a promising tool for bone replacement therapies of systemically altered bone. However, information about combined effects of strontium and silicon on osteoclastogenesis is still not available. Therefore, differentiation capacity of human peripheral blood mononuclear cells into osteoclast-like cells was investigated by culturing the cells in combination with a strontium- (pS100) and a strontium/silicon-modified calcium phosphate bone cement (pS100-G). Following culturing expression patterns of the cells in respect of their differentiation- and fusion-capacity were determined by real-time quantitative polymerase chain reaction, while cell morphology was visualized by phalloidin staining of the actin cytoskeleton. Additionally, strontium and silicon release from the bone cements into the cultivation media was determined using inductively coupled plasma mass spectrometry while surface topography of the cements was investigated by scanning electron microscopy. The results show that simultaneous incorporation of strontium and silicon into calcium phosphate cements changes properties of the cement such as solubility, and nearly abrogates the inhibitory effects of strontium on osteoclastogenesis.


Assuntos
Materiais Biocompatíveis/química , Cimentos Ósseos/química , Fosfatos de Cálcio/química , Leucócitos Mononucleares/citologia , Osteoclastos/citologia , Silício/química , Estrôncio/química , Actinas/química , Osso e Ossos/metabolismo , Técnicas de Cultura de Células , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular , Células Cultivadas , Meios de Cultura , Citoesqueleto/metabolismo , Humanos , Microscopia Eletrônica de Varredura , Osteoclastos/metabolismo , Osteogênese/efeitos dos fármacos , Faloidina/química , Solubilidade
14.
Mater Sci Eng C Mater Biol Appl ; 84: 159-167, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29519425

RESUMO

The present study describes the development and characterization of strontium(II)-modified biomimetic scaffolds based on mineralized collagen type I as potential biomaterial for the local treatment of defects in systemically impaired (e.g. osteoporotic) bone. In contrast to already described collagen/hydroxyapatite nanocomposites calcium was substituted with strontium to the extent of 25, 50, 75 and 100mol% by substituting the CaCl2-stock solution (0.1M) with SrCl2 (0.1M) during the scaffold synthesis. Simultaneous fibrillation and mineralization of collagen led to the formation of collagen-mineral nanocomposites with mineral phases shifting from nanocrystalline hydroxyapatite (Sr0) over poorly crystalline Sr-rich phases towards a mixed mineral phase (Sr100), consisting of an amorphous strontium phosphate (identified as Collin's salt, Sr6H3(PO4)5∗2 H2O, CS) and highly crystalline strontium hydroxyapatite (Sr5(PO4)3OH, SrHA). The formed mineral phases were characterized by transmission electron microscopy (TEM) and RAMAN spectroscopy. All collagen/mineral nanocomposites with graded strontium content were processed to scaffolds exhibiting an interconnected porosity suitable for homogenous cell seeding in vitro. Strontium ions (Sr2+) were released in a sustained manner from the modified scaffolds, with a clear correlation between the released Sr2+ concentration and the degree of Sr-substitution. The accumulated specific Sr2+ release over the course of 28days reached 141.2µg (~27µgmg-1) from Sr50 and 266.1µg (~35µgmg-1) from Sr100, respectively. Under cell culture conditions this led to maximum Sr2+ concentrations of 0.41mM (Sr50) and 0.73mM (Sr100) measured on day 1, which declined to 0.08mM and 0.16mM, respectively, at day 28. Since Sr2+ concentrations in this range are known to have an osteo-anabolic effect, these scaffolds are promising biomaterials for the clinical treatment of defects in systemically impaired bone.


Assuntos
Colágeno/química , Fosfatos/química , Estrôncio/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/metabolismo , Força Compressiva , Microscopia Eletrônica de Transmissão , Nanocompostos/química , Porosidade , Análise Espectral Raman
15.
J Control Release ; 262: 159-169, 2017 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-28757358

RESUMO

Drug functionalization of biomaterials is a modern and popular approach in biomaterials research. Amongst others this concept is used for the functionalization of bone implants to locally stimulate the bone healing process. For example strontium ions (Sr2+) are administered in osteoporosis therapy to stimulate bone growth and have recently been integrated into bone cements. Based on results of different analytical experiments we developed a two-phase model for the transport of therapeutically active Sr2+-ions in bone in combination with Korsmeyer-Peppas kinetics for the Sr2+ release from bone cement. Data of cement dissolution experiments into water in combination with inductively coupled plasma mass spectrometry (ICP-MS) analysis account for dissolution kinetics following Noyes-Whitney rule. For dissolution in α-MEM cell culture media the process is kinetically hindered and can be described by Korsmeyer-Peppas kinetics. Time of flight secondary ion mass spectrometry (ToF-SIMS) was used to determine the Sr2+ diffusion coefficient in healthy and osteoporotic trabecular rat bone. Therefore, bone sections were dipped in aqueous Sr2+-solution by one side and the Sr2+-profile was measured by classical SIMS depth profiling. The Sr2+ mobility can be described by a simple diffusion model and we obtained diffusion coefficients of (2.28±2.97)⋅10-12cm2/s for healthy and of (1.55±0.93)⋅10-10cm2/s for osteoporotic bone. This finding can be explained by a different bone nanostructure, which was observed by focused ion beam scanning electron microscopy (FIB-SEM) and transmission electron microscopy (TEM). Finally, the time and spatially resolved drug transport was calculated by finite element method for the femur of healthy and osteoporotic rats. The obtained results were compared to mass images that were obtained from sections of in vivo experiments by ToF-SIMS. The simulated data fits quite well to experimental results. The successfully applied model for the description of drug dispersion can help to reduce the number of animal experiments in the future.


Assuntos
Cimentos Ósseos , Fêmur/metabolismo , Osteoporose/metabolismo , Estrôncio/administração & dosagem , Animais , Cimentos Ósseos/química , Feminino , Fêmur/ultraestrutura , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Ratos Sprague-Dawley , Estrôncio/química
16.
Biomater Res ; 21: 18, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29046823

RESUMO

BACKGROUND: Surface functionalization of orthopedic implants with pharmaceutically active agents is a modern approach to enhance osseointegration in systemically altered bone. A local release of strontium, a verified bone building therapeutic agent, at the fracture site would diminish side effects, which could occur otherwise by oral administration. Strontium surface functionalization of specially designed titanium-niobium (Ti-40Nb) implant alloy would provide an advanced implant system that is mechanically adapted to altered bone with the ability to stimulate bone formation. METHODS: Strontium-containing coatings were prepared by reactive sputtering of strontium chloride (SrCl2) in a self-constructed capacitively coupled radio frequency (RF) plasma reactor. Film morphology, structure and composition were investigated by scanning electron microscopy (SEM), time of flight secondary ion mass spectrometry (ToF-SIMS) and X-ray photoelectron spectroscopy (XPS). High-resolution transmission electron microscopy (HR-TEM) was used for the investigation of thickness and growth direction of the product layer. TEM lamellae were prepared using the focused ion beam (FIB) technique. Bioactivity of the surface coatings was tested by cultivation of primary human osteoblasts and subsequent analysis of cell morphology, viability, proliferation and differentiation. The results are correlated with the amount of strontium that is released from the coating in biomedical buffer solution, quantified by inductively coupled plasma mass spectrometry (ICP-MS). RESULTS: Dense coatings, consisting of SrOxCly, of more than 100 nm thickness and columnar structure, were prepared. TEM images of cross sections clearly show an incoherent but well-structured interface between coating and substrate without any cracks. Sr2+ is released from the SrOxCly coating into physiological solution as proven by ICP-MS analysis. Cell culture studies showed excellent biocompatibility of the functionalized alloy. CONCLUSIONS: Ti-40Nb alloy, a potential orthopedic implant material for osteoporosis patients, could be successfully plasma coated with a dense SrOxCly film. The material performed well in in vitro tests. Nevertheless, the Sr2+ release must be optimized in future work to meet the requirements of an effective drug delivery system.

17.
Biomed Res Int ; 2017: 2023853, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28424781

RESUMO

Bone histology of decalcified or undecalcified samples depends on the investigation. However, in research each method provides different information to answer the scientific question. Decalcification is the first step after sample fixation and governs what analysis is later feasible on the sections. Besides, decalcification is favored for immunostaining and in situ hybridization. Otherwise, sample decalcification can be damaging to bone biomaterials implants that contains calcium or strontium. On the other hand, after decalcification mineralization cannot be assessed using histology or imaging mass spectrometry. The current study provides a solution to the hardship caused by material presence within the bone tissue. The protocol presents a possibility of gaining sequential and alternating decalcified and undecalcified sections from the same bone sample. In this manner, investigations using histology, protein signaling, in situ hybridization, and mass spectrometry on the same sample can better answer the intended research question. Indeed, decalcification of sections and grindings resulted in well-preserved sample and biomaterials integrity. Immunostaining was comparable to that of classically decalcified samples. The study offers a novel approach that incites correlative analysis on the same sample and reduces the number of processed samples whether clinical biopsies or experimental animals.


Assuntos
Materiais Biocompatíveis/farmacologia , Calcificação Fisiológica/efeitos dos fármacos , Inclusão em Parafina , Animais , Colágeno/metabolismo , Epitopos , Feminino , Fêmur/efeitos dos fármacos , Fêmur/metabolismo , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Osteócitos/efeitos dos fármacos , Osteócitos/metabolismo , Ratos Sprague-Dawley , Coloração pela Prata , Tíbia/metabolismo
18.
J Mater Chem B ; 3(23): 4626-4640, 2015 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-32262477

RESUMO

Making use of the potential of calcium phosphates to host a variety of ions in their crystal lattice, ion substitution of calcium phosphate bone cements has become the subject of intense investigations in the last few years, since this approach allows one to stabilize a bone defect and to locally deliver therapeutic ions into a specific defect site at the same time. In this respect significant attention has been given to strontium ions (Sr2+) lately. Strontium possesses the unique potential to both stimulate new bone formation and inhibit cell-driven bone resorption and thus has been used successfully in systemic osteoporosis therapy. Strontium doping of calcium phosphate bone cements might allow making use of this dual effect to promote local bone defect healing. The goal of this review is to provide an overview of different routes that have been employed to obtain strontium-containing calcium phosphate bone cements and describe their material characteristics as well as their biological properties based on cell culture and animal studies.

19.
Tissue Eng Part C Methods ; 21(2): 160-70, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24919531

RESUMO

OBJECTIVES: Peripheral blood mononuclear cells (PBMC) are an attractive source for the generation of osteoclasts in vitro, which is an important prerequisite for the examination of resorption and remodeling of biomaterials. In this study, different preparation methods are used to obtain cell populations with a rising content of CD14(+) monocytes. We wanted to address the question whether there is a correlation between content of CD14(+) cells in the preparation and functionality of formed osteoclasts. MATERIALS AND METHODS: PBMC obtained by density gradient centrifugation with and without further purification by plastic adherence or immunomagnetic separation of CD14(+) cells were seeded on both cell culture polystyrene and a calcium phosphate bone cement (CPC) and cultivated under stimulation with macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor-kappa B ligand (RANKL). Cell cultures were characterized by histological and fluorescent staining of multinucleated cells that were positive for tartrate-resistant acid phosphatase (TRAP) activity and the presence of actin rings, respectively. Furthermore, activities of osteoclast marker enzymes TRAP and carbonic anhydrase II (CA II) were quantified. For osteoclasts cultured on CPC, resorption pits were visualized using scanning electron microscopy (SEM). RESULTS: Monocytes of all preparations were successfully differentiated into multinucleated osteoclasts showing TRAP and CA II activity on both cell culture plastic and CPC. Preparations involving an additional plastic adherence step exhibited only a minor increase of TRAP and CA II activity in the second week of cultivation. Furthermore, the number of resorption pits on CPC was reduced in these cultures compared with immunomagnetically enriched monocytes and preparations without additional plastic adherence steps. Optimal results with regard to yield, number of multinucleated osteoclasts, activity of TRAP and CA II, and resorption of CPC were obtained by simple density gradient centrifugation. CONCLUSION: All examined monocyte preparation protocols were suitable for the generation of osteoclasts on both polystyrene and CPC. Highly purified monocytes are not mandatory to obtain functional osteoclasts for investigation of biomaterial resorption.


Assuntos
Cimentos Ósseos/farmacologia , Fosfatos de Cálcio/farmacologia , Separação Celular/métodos , Osteoclastos/citologia , Poliestirenos/farmacologia , Fosfatase Ácida/metabolismo , Adulto , Anidrases Carbônicas/metabolismo , Forma Celular/efeitos dos fármacos , Células Cultivadas , Citometria de Fluxo , Humanos , Isoenzimas/metabolismo , Receptores de Lipopolissacarídeos/metabolismo , Fator Estimulador de Colônias de Macrófagos/farmacologia , Monócitos/citologia , Monócitos/efeitos dos fármacos , Monócitos/enzimologia , Monócitos/ultraestrutura , Osteoclastos/efeitos dos fármacos , Ligante RANK/farmacologia , Fosfatase Ácida Resistente a Tartarato
20.
Acta Biomater ; 27: 264-274, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26318366

RESUMO

Additive manufacturing allows to widely control the geometrical features of implants. Recently, we described the fabrication of calcium phosphate cement (CPC) scaffolds by 3D plotting of a storable CPC paste based on water-immiscible carrier liquid. Plotting and hardening is conducted under mild conditions allowing the (precise and local) integration of biological components. In this study, we have developed a procedure for efficient loading of growth factors in the CPC scaffolds during plotting and demonstrated the feasibility of this approach. Bovine serum albumin (BSA) or vascular endothelial growth factor (VEGF), used as model proteins, were encapsulated in chitosan/dextran sulphate microparticles which could be easily mixed into the CPC paste in freeze-dried state. In order to prevent leaching of the proteins during cement setting, usually carried out by immersion in aqueous solutions, the plotted scaffolds were aged in water-saturated atmosphere (humidity). Setting in humidity avoided early loss of loaded proteins but provided sufficient amount of water to allow cement setting, as indicated by XRD analysis and mechanical testing in comparison to scaffolds set in water. Moreover, humidity-set scaffolds were characterised by altered, even improved properties: no swelling or crack formation was observed and accordingly, surface topography, total porosity and compressive modulus of the humidity-set scaffolds differed from those of the water-set counterparts. Direct cultivation of mesenchymal stem cells on the humidity-set scaffolds over 21days revealed their cytocompatibility. Maintenance of the bioactivity of VEGF during the fabrication procedure was proven in indirect and direct culture experiments with endothelial cells. STATEMENT OF SIGNIFICANCE: Additive manufacturing techniques allow the fabrication of implants with defined architecture (inner pore structure and outer shape). Especially printing technologies conducted under mild conditions allow additionally the (spatially controlled) integration of biological components such as drugs or growth factors. That enables the generation of individualized implants which can better meet the requirements of a patient and of tissue engineering constructs. To our knowledge, simultaneous printing of biological components was up to now only described for hydrogel/biopolymer-based materials which suffer from poor mechanical properties. In contrast, we have developed a procedure (based on 3D plotting of a calcium phosphate cement paste) for the fabrication of designed and growth factor loaded calcium-phosphate-based scaffolds applicable for bone regeneration.


Assuntos
Cimentos Ósseos/química , Fosfatos de Cálcio/química , Implantes de Medicamento/química , Peptídeos e Proteínas de Sinalização Intercelular/química , Nanocápsulas/química , Alicerces Teciduais , Substitutos Ósseos/química , Difusão , Implantes de Medicamento/administração & dosagem , Análise de Falha de Equipamento , Injeções , Peptídeos e Proteínas de Sinalização Intercelular/administração & dosagem , Teste de Materiais , Nanocápsulas/administração & dosagem , Nanocápsulas/ultraestrutura , Porosidade , Impressão Tridimensional , Desenho de Prótese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA