Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Langmuir ; 29(47): 14444-50, 2013 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-24156627

RESUMO

It was recently reported, that heterostructures of para-hexaphenyl (p-6P) and α-sexithiophene (6T) deposited on muscovite mica exhibit the intriguing possibility to prepare lasing nanofibers of tunable emission wavelength. For p-6P/6T heterostructures, two different types of 6T emission have been observed, namely, the well-known red emission of bulk 6T crystals and additionally a green emission connected to the interface between p-6P and 6T. In this study, the origin of the green fluorescence is investigated by photoelectron spectroscopy (PES). As a prerequisite, it is necessary to prepare structurally similar organic crystals on a conductive surface, which leads to the choice of highly oriented pyrolytic graphite (HOPG) as a substrate. The similarity between p-6P/6T heterostructures on muscovite mica and on HOPG is evidenced by X-ray diffraction (XRD), scanning force microscopy (SFM), and optical spectroscopy. PES measurements show that the interface between p-6P and 6T crystals is sharp on a molecular level without any sign of interface dipole formation or chemical interaction between the molecules. We therefore conclude that the different emission colors of the two 6T phases are caused by different types of molecular aggregation.

2.
Org Electron ; 13(5): 919-924, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-23483783

RESUMO

We report on the fabrication and performance of vacuum-processed organic field effect transistors utilizing evaporated low-density polyethylene (LD-PE) as a dielectric layer. With C60 as the organic semiconductor, we demonstrate low operating voltage transistors with field effect mobilities in excess of 4 cm2/Vs. Devices with pentacene showed a mobility of 0.16 cm2/Vs. Devices using tyrian Purple as semiconductor show low-voltage ambipolar operation with equal electron and hole mobilities of ∼0.3 cm2/Vs. These devices demonstrate low hysteresis and operational stability over at least several months. Grazing-angle infrared spectroscopy of evaporated thin films shows that the structure of the polyethylene is similar to solution-cast films. We report also on the morphological and dielectric properties of these films. Our experiments demonstrate that polyethylene is a stable dielectric supporting both hole and electron channels.

3.
Synth Met ; 161(23-24): 2562-2565, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22368321

RESUMO

A comprehensive study concerning the reproducibility and stability of organic n-type field effect transistors is presented. C(60) based OFETs were chosen to investigate the fabrication reproducibility and the long term stability because C(60) is a high mobility n-type material. We fabricated 48 transistors and each transistor was measured for 24 h inside the glove box. To test for life time stability - long term measurements up to three months have been undertaken. We report about the fluctuations in the device parameters of all investigated transistors by comparing the transfer characteristics, and on/off ratio for short time and long time measurements. C(60) based OFETs showed good reproducibility and stability for short time measurements and a decay for long time measurements.

4.
J Am Chem Soc ; 133(9): 3056-62, 2011 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-21309570

RESUMO

During the last years, self-assembled organic nanostructures have been recognized as a proper fundament for several electrical and optical applications. In particular, phenylenes deposited on muscovite mica have turned out to be an outstanding material combination. They tend to align parallel to each other forming needlelike structures. In that way, they provide the key for macroscopic highly polarized emission, waveguiding, and lasing. The resulting anisotropy has been interpreted so far by an induced dipole originating from the muscovite mica substrate. Based on a combined experimental and theoretical approach, we present an alternative growth model being able to explain molecular adsorption on sheet silicates in terms of molecule-surface interactions only. By a comprehensive comparison between experiments and simulations, we demonstrate that geometrical changes in the substrate surface or molecule lead to different molecular adsorption geometries and needle directions which can be predicted by our growth model.

5.
J Phys Chem C Nanomater Interfaces ; 119(27): 15689-15697, 2015 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-26191119

RESUMO

Multilayered epitaxial nanofibers are exemplary model systems for the study of exciton dynamics and lasing in organic materials because of their well-defined morphology, high luminescence efficiencies, and color tunability. We use temperature-dependent continuous wave and picosecond photoluminescence (PL) spectroscopy to quantify exciton diffusion and resonance-energy transfer (RET) processes in multilayered nanofibers consisting of alternating layers of para-hexaphenyl (p6P) and α-sexithiophene (6T) serving as exciton donor and acceptor material, respectively. The high probability for RET processes is confirmed by quantum chemical calculations. The activation energy for exciton diffusion in p6P is determined to be as low as 19 meV, proving p6P epitaxial layers also as a very suitable donor material system. The small activation energy for exciton diffusion of the p6P donor material, the inferred high p6P-to-6T resonance-energy-transfer efficiency, and the observed weak PL temperature dependence of the 6T acceptor material together result in an exceptionally high optical emission performance of this all-organic material system, thus making it well suited, for example, for organic light-emitting devices.

6.
Cryst Growth Des ; 14(2): 442-449, 2014 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-24526866

RESUMO

The morphology and structure of 2,2':6',2″-ternaphthalene (NNN) deposited on muscovite mica(001) substrates was investigated by scanning force microscopy (SFM) and specular X-ray diffraction measurements. Consistently, both methods reveal the coexistence of needle-like structures with a {111} contact plane and {001} orientated island-like crystallites, which are built up by almost upright standing NNN molecules. Both orientations are characterized by a well-defined azimuthal alignment relative to the substrate surface, which is analyzed by X-ray diffraction pole figure (XRD-PF) measurements. Based on XRD-PF and SFM analysis, the azimuthal alignment of {001} orientated crystallites is explained by ledge-directed epitaxy along the fibers' sidewalls. These fibers are found to orient along two dominant directions, which is verified and explained by a doubling of the energetically preferred molecular adsorption site by mirror symmetry of the substrate surface. The experimental findings are confirmed by force-field simulations and are discussed based on a recently reported growth model.

7.
ACS Appl Mater Interfaces ; 6(17): 15148-53, 2014 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-25142130

RESUMO

The influence of the nature of interface between organic semiconductor and gate dielectric on bias stress electrical stability of n-type C60-based organic field effect transistors (OFETs) was studied. The bias stress induced threshold voltage (Vth) shift was found to depend critically on the OFET device structure: the direction of V(th) shift in top-gate OFETs was opposite to that in bottom-gate OFETs, while the use of the dual-gate OFET structure resulted in just very small variations in V(th). The opposite direction of Vth shift is attributed to the different nature of interfaces between C60 semiconductor and Parylene dielectric in these devices. The V(th) shift to more positive voltages upon bias stress in bottom-gate C60-OFET was similar to that observed for other n-type semiconductors and rationalized by electron trapping in the dielectric or at the gate dielectric/C60 interface. The opposite direction of Vth shift in top-gate C60-OFETs is attributed to free radical species created in the course of Parylene deposition on the surface of C60 during device fabrication, which produce plenty of hole traps. It was also realized that the dual-gate OFETs gives stable characteristics, which are immune to bias stress effects.

8.
Cryst Growth Des ; 13(2): 536-542, 2013 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-23413362

RESUMO

The morphology and structure of sexithiophene deposited on KCl (100) substrates was investigated by scanning force microscopy and specular X-ray diffraction measurements. Two different needle-like structures with {010} and {4̅11} contact planes have been observed as well as islands of almost upright standing sexithiophene molecules with a {100} contact plane. Furthermore an azimuthal alignment of all three crystal orientations was observed by X-ray diffraction pole figure measurements, and the growth directions reflect the 4-fold rotational symmetry of the substrate surface. In addition the analysis of crystals with {4̅11} and {100} contact planes unveiled that they share a common crystallographic direction which is explained by ledge directed epitaxy.

9.
Appl Phys A Mater Sci Process ; 107(4): 985-993, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23785220

RESUMO

This work reports on the investigation of the photosensitive polymer poly(diphenyl bicyclo[2.2.1]hept-5-ene-2,3-dicarboxylate) (PPNB), which undergoes the photo-Fries rearrangement upon illumination with UV-light, used as interfacial layers in organic electronic devices. Two cases were investigated: the use of a blend of PPNB with poly-vinylcarbazole (PVK) as an interlayer in para-sexiphenyl (PSP) based organic light emitting diodes (OLEDs) and the use of PPNB as gate dielectric layer in organic field effect transistors (OFETs). The photo-Fries rearrangement reaction causes a change of the polymer chemical structure resulting in a change of its physical and chemical properties. The electroluminescence spectra and emission of the PSP OLEDs are not affected when fabricated with a non-UV-illuminated PPNB:PVK blend. However, the electroluminescence is totally quenched in those OLEDs fabricated with UV-illuminated PPNB:PVK blend. Although the dielectric constant of PPNB increases upon UV-treatment, it is demonstrated that those OFETs built with UV-treated PPNB as gate dielectric have lower performance than those OFETs built with non-UV-treated PPNB. Furthermore, the effect of the UV-illumination of PPNB and PPNB:PVK blend on the growth of the small molecules C60 and PSP has been studied by atomic force microscopy. Using photolithography, this kind of photochemistry can be performed to spatially control and tune the optical and electrical performance of organic electronic devices.

10.
ACS Nano ; 6(6): 4629-38, 2012 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-22594789

RESUMO

We report on the epitaxial growth of periodic para-hexaphenyl (p-6P)/α-sexi-thiophene (6T) multilayer heterostructures on top of p-6P nanotemplates. By the chosen approach, 6T molecules are forced to align parallel to the p-6P template molecules, which yields highly polarized photoluminescence (PL)-emission of both species. The PL spectra show that the fabricated multilayer structures provide optical emission from two different 6T phases, interfacial 6T molecules, and 3-dimensional crystallites. By a periodical deposition of 6T monolayers and p-6P spacers it is demonstrated that the strongly polarized spectral contribution of interfacial 6T can be precisely controlled and amplified. By analyzing the PL emission of both 6T phases as a function of p-6P spacer thickness (Δd(p-6P)) we have determined a critical value of Δd(p-6P )≈ 2.73 nm where interfacial 6T runs into saturation and the surplus of 6T starts to cluster in 3-dimensional crystallites. These results are further substantiated by UPS and XRD measurements. Moreover, it is demonstrated by morphological investigations, provided by scanning force microscopy and fluorescence microscopy, that periodical deposition of 6T and p-6P leads to a significant improvement of homogeneity in PL-emission and morphology of nanofibers. Photoluminescence excitation experiments in combination with time-resolved photoluminescence demonstrate that the spectral emission of the organic multilayer nanofibers is dominated by a resonant energy transfer from p-6P host- to 6T guest-molecules. The sensitization time of the 6T emission in the 6T/p-6P multilayer structures depends on the p-6P spacer thickness, and can be explained by well separated layers of host-guest molecules obtained by organic-organic heteroepitaxy. The spectral emission and consequently the fluorescent color of the nanofibers can be efficiently tuned from the blue via white to the yellow-green spectral range.


Assuntos
Cor , Medições Luminescentes/métodos , Nanopartículas/química , Nanopartículas/ultraestrutura , Refratometria/métodos , Tiofenos/química , Cristalização/métodos , Luminescência , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Propriedades de Superfície
11.
Adv Mater ; 24(3): 375-80, 2012 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-22109816

RESUMO

Millenniums-old natural dye indigo--a "new" ambipolar organic semiconductor. Indigo shows balanced electron and hole mobilities of 1 × 10(-2) cm(2) V(-1) s(-1) and good stability against degradation in air. Inverters with gains of 105 in the first and 110 in the third quadrant are demonstrated. Fabricated entirely from natural and biodegradable compounds, these devices show the large potential of such materials for green organic electronics.


Assuntos
Produtos Biológicos/química , Corantes/química , Índigo Carmim/química , Semicondutores , Eletroquímica , Compostos de Estanho/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA