Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Clin Gastroenterol ; 58(1): 91-97, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36729430

RESUMO

GOAL: The objective of this study was to characterize an autoimmune hepatitis (AIH)/nonalcoholic fatty liver disease (NAFLD) overlap cohort, determine if they received standard of care treatment, and delineate their outcomes in comparison with patients with AIH or NAFLD alone. BACKGROUND: AIH is a relatively rare and heterogeneously presenting liver disease of unknown etiology. NAFLD is a leading cause of liver disease worldwide. AIH treatment includes steroids, which have adverse metabolic effects that can worsen NAFLD. No treatment guidelines are available to mitigate this side on AIH/NAFLD overlap patients. Few studies to date have examined these patients' characteristics, management practices, and outcomes. MATERIALS AND METHODS: A single-center, retrospective chart review study examining biopsy-proven AIH/NAFLD, AIH, and NAFLD patients. Characteristics, treatment, and 1- and 3-year outcomes (all-cause mortality, need for liver transplantation, or decompensated cirrhosis) were evaluated. RESULTS: A total of 72 patients (36.1% AIH/NAFLD, 34.7% AIH, and 29.2% NAFLD) were included. AIH/NAFLD patients were found to be more often Hispanic/Latino, female, and with lower liver aminotransaminases, immunoglobulin G, and anti-smooth muscle antibody positivity. AIH/NAFLD patients were less likely to receive standard of care treatment. No significant differences in outcomes were seen between AIH/NAFLD and either AIH or NAFLD. CONCLUSIONS: Our study demonstrated that AIH/NAFLD patients have unique characteristics and are less likely to receive standard of care treatment compared with patients with AIH alone. Despite this, no difference in outcomes (all-cause mortality, need for liver transplantation, or decompensated cirrhosis) was seen. Given NAFLD's rising prevalence, AIH/NAFLD cases will likely increase, and may benefit from alternative treatment guidelines to prevent worsening of NAFLD.


Assuntos
Hepatite Autoimune , Hepatopatia Gordurosa não Alcoólica , Humanos , Feminino , Hepatopatia Gordurosa não Alcoólica/terapia , Hepatite Autoimune/terapia , Estudos Retrospectivos , Cirrose Hepática/etiologia , Cirrose Hepática/terapia
2.
J Phys Chem Lett ; 15(32): 8187-8195, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39093598

RESUMO

Gas-phase potential energy surfaces (PESs) are often used to provide an intuitive understanding of molecular chemical reactivity. Most chemical reactions, however, take place in solution, and it is unclear whether gas-phase PESs accurately represent chemical processes in solvent environments. In this work we use quantum simulations to investigate the dissociation energetics of NaK+ in liquid tetrahydrofuran (THF) to understand the degree to which solvent interactions alter the gas-phase picture. Using umbrella sampling and thermodynamic integration techniques, we construct condensed-phase free energy surfaces of NaK+ on THF in both the ground and electronic excited states. We find that solvation by THF completely alters the nature of the NaK+ bond by reordering the thermodynamic dissociation products. Reaching the thermodynamic dissociation limit in THF also requires a long-range charge transfer process that has no counterpart in the gas phase. Gas-phase PESs, even with perturbations, cannot adequately describe the reactivity of simple asymmetric molecules in solution.

3.
J Phys Chem B ; 128(10): 2425-2431, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38422045

RESUMO

Different simulation models of the hydrated electron produce different solvation structures, but it has been challenging to determine which simulated solvation structure, if any, is the most comparable to experiment. In a recent work, Neupane et al. [J. Phys. Chem. B 2023, 127, 5941-5947] showed using Kirkwood-Buff theory that the partial molar volume of the hydrated electron, which is known experimentally, can be readily computed from an integral over the simulated electron-water radial distribution function. This provides a sensitive way to directly compare the hydration structure of different simulation models of the hydrated electron with experiment. Here, we compute the partial molar volume of an ab-initio-simulated hydrated electron model based on density-functional theory (DFT) with a hybrid functional at different simulated system sizes. We find that the partial molar volume of the DFT-simulated hydrated electron is not converged with respect to the system size for simulations with up to 128 waters. We show that even at the largest simulation sizes, the partial molar volume of DFT-simulated hydrated electrons is underestimated by a factor of 2 with respect to experiment, and at the standard 64-water size commonly used in the literature, DFT-based simulations underestimate the experimental solvation volume by a factor of ∼3.5. An extrapolation to larger box sizes does predict the experimental partial molar volume correctly; however, larger system sizes than those explored here are currently intractable without the use of machine-learned potentials. These results bring into question what aspects of the predicted hydrated electron radial distribution function, as calculated by DFT-based simulations with the PBEh-D3 functional, deviate from the true solvation structure.

4.
J Phys Chem Lett ; 15(4): 903-911, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38241152

RESUMO

Decoherence is a fundamental phenomenon that occurs when an entangled quantum state interacts with its environment, leading to collapse of the wave function. The inevitability of decoherence provides one of the most intrinsic limits of quantum computing. However, there has been little study of the precise chemical motions from the environment that cause decoherence. Here, we use quantum molecular dynamics simulations to explore the photodissociation of Na2+ in liquid Ar, in which solvent fluctuations induce decoherence and thus determine the products of chemical bond breaking. We use machine learning to characterize the solute-solvent environment as a high-dimensional feature space that allows us to predict when and onto which photofragment the bonding electron will localize. We find that reaching a requisite photofragment separation and experiencing out-of-phase solvent collisions underlie decoherence during chemical bond breaking. Our work highlights the utility of machine learning for interpreting complex solution-phase chemical processes as well as identifies the molecular underpinnings of decoherence.

5.
J Chem Theory Comput ; 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39110603

RESUMO

Even though single hydrated electrons (ehyd-'s) are stable in liquid water, two hydrated electrons can bimolecularly react with water to create H2 and hydroxide: ehyd- + ehyd- + 2H2O → H2 + 2OH-. The rate of this reaction has an unusual temperature and isotope dependence as well as no dependence on ionic strength, which suggests that cosolvation of two electrons as a single hydrated dielectron (e2,hyd2-) might be an important intermediate in the mechanism of this reaction. Here, we present an ab initio density functional theory study of this reaction to better understand the potential properties, reactivity, and experimental accessibility of hydrated dielectrons. Our simulations create hydrated dielectrons by first simulating single ehyd-'s and then injecting a second electron, providing a well-defined time zero for e2,hyd2- formation and offering insight into a potential experimental route to creating dielectrons and optically inducing the reaction. We find that e2,hyd2- immediately forms in every member of our ensemble of trajectories, allowing us to study the molecular mechanism of H2 and OH- formation. The subsequent reaction involves separate proton transfer steps with a generally well-defined hydride subintermediate. The time scales for both proton transfer steps are quite broad, with the first proton transfer step spanning times over a few ps, while the second proton transfer step varies over ∼150 fs. We find that the first proton transfer rate is dictated by whether or not the reacting water is part of an H-bond chain that allows the newly created OH- to rapidly move by Grotthuss-type proton hopping to minimize electrostatic repulsion with H-. The second proton transfer step depends significantly on the degree of solvation of H-, leading to a wide range of reactive geometries where the two waters involved can lie either across the dielectron cavity or more adjacent to each other. This also allows the two proton transfer events to take place either effectively concertedly or sequentially, explaining differing views that have been presented in the literature.

6.
Chem Mater ; 36(11): 5552-5562, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38883433

RESUMO

Conjugated polymers are a versatile class of electronic materials featured in a variety of next-generation electronic devices. The utility of such polymers is contingent in large part on their electrical conductivity, which depends both on the density of charge carriers (polarons) and on the carrier mobility. Carrier mobility, in turn, is largely controlled by the separation between the polarons and dopant counterions, as counterions can produce Coulombic traps. In previous work, we showed that large dopants based on dodecaborane (DDB) clusters were able to reduce Coulombic binding and thus increase carrier mobility in regioregular (RR) poly(3-hexylthiophene-2,5-diyl) (P3HT). Here, we use a DDB-based dopant to study the effects of polaron-counterion separation in chemically doped regiorandom (RRa) P3HT, which is highly amorphous. X-ray scattering shows that the DDB dopants, despite their large size, can partially order the RRa P3HT during doping and produce a doped polymer crystal structure similar to that of DDB-doped RR P3HT; Alternating Field (AC) Hall measurements also confirm a similar hole mobility. We also show that use of the large DDB dopants successfully reduces Coulombic binding of polarons and counterions in amorphous polymer regions, resulting in a 77% doping efficiency in RRa P3HT films. The DDB dopants are able to produce RRa P3HT films with a 4.92 S/cm conductivity, a value that is ∼200× higher than that achieved with 3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ), the traditional dopant molecule. These results show that tailoring dopants to produce mobile carriers in both the amorphous and semicrystalline regions of conjugated polymers is an effective strategy for increasing achievable polymer conductivities, particularly in low-cost polymers with random regiochemistry. The results also emphasize the importance of dopant size and shape for producing Coulombically unbound, mobile polarons capable of electrical conduction in less-ordered materials.

7.
Neurology ; 102(5): e208112, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38335499

RESUMO

BACKGROUND AND OBJECTIVES: Vamorolone is a dissociative agonist of the glucocorticoid receptor that has shown similar efficacy and reduced safety concerns in comparison with prednisone in Duchenne muscular dystrophy (DMD). This study was conducted to determine the efficacy and safety of vamorolone over 48 weeks and to study crossover participants (prednisone to vamorolone; placebo to vamorolone). METHODS: A randomized, double-blind, placebo-controlled and prednisone-controlled clinical trial of 2 doses of vamorolone was conducted in participants with DMD, in the ages from 4 years to younger than 7 years at baseline. The interventions were 2 mg/kg/d of vamorolone and 6 mg/kg/d of vamorolone for 48 weeks (period 1: 24 weeks + period 2: 24 weeks) and 0.75 mg/kg/d of prednisone and placebo for the first 24 weeks (before crossover). Efficacy was evaluated through gross motor outcomes and safety through adverse events, growth velocity, body mass index (BMI), and bone turnover biomarkers. This analysis focused on period 2. RESULTS: A total of 121 participants with DMD were randomized. Vamorolone at a dose of 6 mg/kg/d showed maintenance of improvement for all motor outcomes to week 48 (e.g., for primary outcome, time to stand from supine [TTSTAND] velocity, week 24 least squares mean [LSM] [SE] 0.052 [0.0130] rises/s vs week 48 LSM [SE] 0.0446 [0.0138]). After 48 weeks, vamorolone at a dose of 2 mg/kg/d showed similar improvements as 6 mg/kg/d for North Star Ambulatory Assessment (NSAA) (vamorolone 6 mg/kg/d-vamorolone 2 mg/kg/d LSM [SE] 0.49 [1.14]; 95% CI -1.80 to 2.78, p = 0.67), but less improvement for other motor outcomes. The placebo to vamorolone 6 mg/kg/d group showed rapid improvements after 20 weeks of treatment approaching benefit seen with 48-week 6 mg/kg/d of vamorolone treatment for TTSTAND, time to run/walk 10 m, and NSAA. There was significant improvement in linear growth after crossover in the prednisone to vamorolone 6 mg/kg/d group, and rapid reversal of prednisone-induced decline in bone turnover biomarkers in both crossover groups. There was an increase in BMI after 24 weeks of treatment that then stabilized for both vamorolone groups. DISCUSSION: Improvements of motor outcomes seen with 6 mg/kg/d of vamorolone at 24 weeks of treatment were maintained to 48 weeks of treatment. Vamorolone at a dose of 6 mg/kg/d showed better maintenance of effect compared with vamorolone at a dose of 2 mg/kg/d for most (3/5) motor outcomes. Bone morbidities of prednisone (stunting of growth and declines in serum bone biomarkers) were reversed when treatment transitioned to vamorolone. TRIAL REGISTRATION INFORMATION: ClinicalTrials.gov Identifier: NCT03439670. CLASSIFICATION OF EVIDENCE: This study provides Class I evidence that for boys with DMD, the efficacy of vamorolone at a dose of 6 mg/kg/d was maintained over 48 weeks.


Assuntos
Distrofia Muscular de Duchenne , Pregnadienodiois , Humanos , Masculino , Biomarcadores , Distrofia Muscular de Duchenne/tratamento farmacológico , Prednisona/efeitos adversos , Pregnadienodiois/efeitos adversos , Pré-Escolar , Criança
8.
Cancer Discov ; 14(8): 1457-1475, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-38587317

RESUMO

Microsatellite-unstable (MSI) cancers require WRN helicase to resolve replication stress due to expanded DNA (TA)n dinucleotide repeats. WRN is a promising synthetic lethal target for MSI tumors, and WRN inhibitors are in development. In this study, we used CRISPR-Cas9 base editing to map WRN residues critical for MSI cells, validating the helicase domain as the primary drug target. Fragment-based screening led to the development of potent and highly selective WRN helicase covalent inhibitors. These compounds selectively suppressed MSI model growth in vitro and in vivo by mimicking WRN loss, inducing DNA double-strand breaks at expanded TA repeats and DNA damage. Assessment of biomarkers in preclinical models linked TA-repeat expansions and mismatch repair alterations to compound activity. Efficacy was confirmed in immunotherapy-resistant organoids and patient-derived xenograft models. The discovery of potent, selective covalent WRN inhibitors provides proof of concept for synthetic lethal targeting of WRN in MSI cancer and tools to dissect WRN biology. Significance: We report the discovery and characterization of potent, selective WRN helicase inhibitors for MSI cancer treatment, with biomarker analysis and evaluation of efficacy in vivo and in immunotherapy-refractory preclinical models. These findings pave the way to translate WRN inhibition into MSI cancer therapies and provide tools to investigate WRN biology. See related commentary by Wainberg, p. 1369.


Assuntos
Helicase da Síndrome de Werner , Humanos , Helicase da Síndrome de Werner/genética , Camundongos , Animais , Instabilidade de Microssatélites , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/patologia , Linhagem Celular Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA