Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mycorrhiza ; 28(1): 59-70, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28948352

RESUMO

Mycorrhizal symbiosis is known to be the most prevalent form of fungal symbiosis with plants. Although some studies focus on the importance of mycorrhizal symbiosis for enhanced flavonoids in the host plants, a comprehensive understanding of the relationship still is lacking. Therefore, we studied the effects of mycorrhizal inoculation of onions (Allium cepa L.) regarding flavonol concentration and the genes involved in flavonol biosynthesis when different forms of nitrogen were supplied. We hypothesized that mycorrhizal inoculation can act as a biotic stress and might lead to an increase in flavonols and expression of related genes. The three main quercetin compounds [quercetin-3,4'-di-O-ß-D-glucoside (QDG), quercetin-4'-O-ß-D-glucoside (QMG), and isorhamnetin-4'-O-ß-D-glucoside (IMG)] of onion bulbs were identified and analyzed after inoculating with increasing amounts of mycorrhizal inocula at two time points and supplying either predominantly NO3- or NH4+ nitrogen. We also quantified plant dry mass, nutrient element uptake, chalcone synthase (CHS), flavonol synthase (FLS), and phenyl alanine lyase (PAL) gene expression as key enzymes for flavonol biosynthesis. Inoculation with arbuscular mycorrhizal fungi (highest amount) and colonization at late development stages (bulb growth) increased QDG and QMG concentrations if plants were additionally supplied with predominantly NH4+. No differences were observed in the IMG content. RNA accumulation of CHS, FLS, and PAL was affected by the stage of the mycorrhizal symbiosis and the nitrogen form. Accumulation of flavonols was not correlated, however, with either the percentage of myorrhization or the abundance of transcripts of flavonoid biosynthesis genes. We found that in plants at late developmental stages, RNA accumulation as a reflection of a current physiological situation does not necessarily correspond with the content of metabolites that accumulate over a long period. Our findings suggest that nitrogen form can be an important factor determining mycorrhizal development and that both nitrogen form and mycorrhizas interact to influence flavonol biosynthesis.


Assuntos
Flavonóis/biossíntese , Micorrizas/fisiologia , Nitrogênio/metabolismo , Cebolas/metabolismo , Proteínas de Plantas/genética , Aciltransferases/genética , Aciltransferases/metabolismo , Expressão Gênica , Nitrogênio/química , Cebolas/genética , Oxirredutases/genética , Oxirredutases/metabolismo , Proteínas de Plantas/metabolismo
2.
Environ Sci Technol ; 51(11): 6100-6109, 2017 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-28506063

RESUMO

Carbamazepine (CBZ) is an antiepileptic drug which is persistent in wastewater treatment plants and the environment. It has been frequently detected in plant material after irrigation with treated wastewater. To date, little information is, however, available on the transformation of CBZ in plants. In the present study, the uptake, translocation, and transformation of CBZ was studied in hydroponically grown tomato plants. After 35 days of exposure >80% of the total spiked amount of CBZ was taken by the tomato plants and mainly stored in the leaves. A total of 11 transformation products (TP) (mainly phase-I) were quantified by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and their total amount corresponded to 33% of the CBZ taken up. The ratio of CBZ metabolites to CBZ was highest in fruits (up to 2.5) and leaves (0.5), suggesting an intensive transformation of CBZ in these compartments. Further 10 TPs (phase-I and II) were identified by LC-high resolution mass spectrometry screening, likely comprising another 12% of CBZ. On the basis of these experiments and on an experiment with CBZ-10,11-epoxide a transformation pathway of CBZ in intact tomato plants is proposed that involves epoxidation, hydrolysis, hydroxylation, ring contraction, or loss of the carbamoyl group, followed by conjugation to glucose or cysteine, but also reduction of CBZ. This transformation pathway and analytical data of CBZ transformation products allow for their determination also in field grown vegetable and for the generation of more accurate exposure data of consumers of vegetable irrigated with treated municipal wastewater.


Assuntos
Carbamazepina/metabolismo , Solanum lycopersicum , Poluentes Químicos da Água/metabolismo , Preparações Farmacêuticas , Espectrometria de Massas em Tandem , Águas Residuárias
3.
J Chem Ecol ; 43(2): 188-197, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28078623

RESUMO

A mixture of behaviorally active volatiles was identified from the fruit of snowberry, Symphoricarpos albus laevigatus, for Rhagoletis zephyria flies reared from snowberry fruit. A nine-component blend containing 3-methylbutan-1-ol (3%), dimethyl trisulfide (1%), 1-octen-3-ol (40%), myrcene (8%), nonanal (9%), linalool (13%), (3E)-4,8-dimethyl-1,3,7-nonatriene (DMNT, 6%), decanal (15%), and ß-caryophyllene (5%) was identified that gave consistent electroantennogram activity and was behaviorally active in flight tunnel tests. In other flight tunnel assays, snowberry flies from two sites in Washington state, USA, displayed significantly greater levels of upwind oriented flight to sources with the snowberry volatile blend compared with previously identified volatile blends from domestic apple (Malus domestica) and downy hawthorn (Crataegus mollis) fruit from the eastern USA, and domestic apple, black hawthorn (C. douglasii) and ornamental hawthorn (C. monogyna) from Washington state. Selected subtraction assays showed that whereas removal of DMNT or 1-octen-3-ol significantly reduced the level of upwind flight, removal of myrcene and ß-caryophyllene, or dimethyl trisulfide alone did not significantly affect the proportion of upwind flights. Our findings add to previous studies showing that populations of Rhagoletis flies infesting different host fruit are attracted to unique mixtures of volatile compounds specific to their respective host plants. Taken together, the results support the hypothesis that differences among flies in their behavioral responses to host fruit odors represent key adaptations involved in sympatric host plant shifts, contributing to host specific mating and generating prezygotic reproductive isolation among members of the R. pomonella sibling species complex.


Assuntos
Comportamento Animal/efeitos dos fármacos , Controle de Insetos/métodos , Symphoricarpos/metabolismo , Tephritidae/fisiologia , Compostos Orgânicos Voláteis/farmacologia , Animais , Ecossistema , Voo Animal/efeitos dos fármacos , Frutas/parasitologia , Interações Hospedeiro-Parasita , Modelos Teóricos , Symphoricarpos/parasitologia , Compostos Orgânicos Voláteis/isolamento & purificação , Compostos Orgânicos Voláteis/metabolismo , Washington
4.
Mol Ecol ; 25(7): 1595-609, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-26846713

RESUMO

Wolbachia is a maternally inherited and ubiquitous endosymbiont of insects. It can hijack host reproduction by manipulations such as cytoplasmic incompatibility (CI) to enhance vertical transmission. Horizontal transmission of Wolbachia can also result in the colonization of new mitochondrial lineages. In this study, we present a 15-year-long survey of Wolbachia in the cherry fruit fly Rhagoletis cerasi across Europe and the spatiotemporal distribution of two prevalent strains, wCer1 and wCer2, and associated mitochondrial haplotypes in Germany. Across most of Europe, populations consisted of either 100% singly (wCer1) infected individuals with haplotype HT1, or 100% doubly (wCer1&2) infected individuals with haplotype HT2, differentiated only by a single nucleotide polymorphism. In central Germany, singly infected populations were surrounded by transitional populations, consisting of both singly and doubly infected individuals, sandwiched between populations fixed for wCer1&2. Populations with fixed infection status showed perfect association of infection and mitochondria, suggesting a recent CI-driven selective sweep of wCer2 linked with HT2. Spatial analysis revealed a range expansion for wCer2 and a large transition zone in which wCer2 splashes appeared to coalesce into doubly infected populations. Unexpectedly, the transition zone contained a large proportion (22%) of wCer1&2 individuals with HT1, suggesting frequent intraspecific horizontal transmission. However, this horizontal transmission did not break the strict association between infection types and haplotypes in populations outside the transition zone, suggesting that this horizontally acquired Wolbachia infection may be transient. Our study provides new insights into the rarely studied Wolbachia invasion dynamics in field populations.


Assuntos
DNA Mitocondrial/genética , Evolução Molecular , Genética Populacional , Tephritidae/genética , Tephritidae/microbiologia , Wolbachia/genética , Animais , Teorema de Bayes , Transmissão de Doença Infecciosa , Europa (Continente) , Frequência do Gene , Genoma de Inseto , Genótipo , Alemanha , Haplótipos , Repetições de Microssatélites , Modelos Genéticos , Seleção Genética , Análise de Sequência de DNA , Análise Espaço-Temporal
5.
Mol Ecol ; 24(11): 2759-76, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25851077

RESUMO

Host race formation, the establishment of new populations using novel resources, is a major hypothesized mechanism of ecological speciation, especially in plant-feeding insects. The initial stages of host race formation will often involve phenotypic plasticity on the novel resource, with subsequent genetically based adaptations enhancing host-associated fitness differences. Several studies have explored the physiology of the plastic responses of insects to novel host environments. However, the mechanisms underlying evolved differences among host races and species remain poorly understood. Here, we demonstrate a reciprocal larval performance difference between two closely related species of Rhagoletis flies, R. pomonella and R. zephyria, specialized for feeding in apple and snowberry fruit, respectively. Microarray analysis of fly larvae feeding in apples versus snowberries revealed patterns of transcriptome-wide differential gene expression consistent with both plastic and evolved responses to the different fruit resources, most notably for detoxification-related genes such as cytochrome p450s. Transcripts exhibiting evolved expression differences between species tended to also demonstrate plastic responses to fruit environment. The observed pattern suggests that Rhagoletis larvae exhibit extensive plasticity in gene expression in response to novel fruit that may potentiate shifts to new hosts. Subsequent selection, particularly selection to suppress initially costly plastic responses, could account for the evolved expression differences observed between R. pomonella and R. zephyria, creating specialized races and new fly species. Thus, genetically based ecological adaptations generating new biodiversity may often evolve from initial plastic responses in gene expression to the challenges posed by novel environments.


Assuntos
Evolução Molecular , Frutas , Seleção Genética , Tephritidae/genética , Transcriptoma , Adaptação Fisiológica/genética , Animais , Crataegus , Larva/fisiologia , Malus , Análise de Sequência com Séries de Oligonucleotídeos , Tephritidae/classificação , Tephritidae/fisiologia
6.
Ecol Evol ; 14(7): e11417, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38962023

RESUMO

The lack of recovery of Chinook salmon (Oncorhynchus tshawytscha) in the Pacific Northwest has been blamed in part on predation by pinnipeds, particularly the harbor seal (Phoca vitulina). Previous work at a limited number of locations has shown that male seal diet contains more salmon than that of female seals and that sex ratios at haul-out sites differ spatiotemporally. This intrapopulation variation in predation may result in greater effects on salmon than suggested by models assuming equal spatial distribution and diet proportion. To address the generality of these patterns, we examined the sex ratios and diet of male and female harbor seals from 13 haul-out sites in the inland waters of Washington State and the province of British Columbia during 2012-2018. DNA metabarcoding was conducted to determine prey species proportions of individual scat samples. The sex of harbor seals was then determined from each scat matrix sample with the use of quantitative polymerase chain reaction (qPCR). We analyzed 2405 harbor seal scat samples using generalized linear mixed models (GLMMs) to examine the factors influencing harbor seal sex ratio at haul-out sites and permutational multivariate analysis of variance (PERMANOVA) to examine the influence of sex and haul-out site on harbor seal diet composition. We found that the overall sex ratio was 1:1.02 (female:male) with notable spatiotemporal variation. Salmoniformes were about 2.6 times more abundant in the diet of males than in the diet of females, and Chinook salmon comprised ca. three times more of the average male harbor seal's diet than the average female's diet. Based on site-specific sex ratios and diet data, we identified three haul-out sites where Chinook salmon appear to be under high predation pressure by male harbor seals: Cowichan Bay, Cutts Area, and Fraser River. Our study indicates that combining sex-specific pinniped diet data with the sex ratio of haul-out sites can help identify priority sites of conservation concern.

7.
Front Microbiol ; 13: 1080847, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36687587

RESUMO

Introduction: Hydroponic vegetable cultivation is characterized by high intensity and frequent nitrogen fertilizer application, which is related to greenhouse gas emissions, especially in the form of nitrous oxide (N2O). So far, there is little knowledge about the sources of N2O emissions from hydroponic systems, with the few studies indicating that denitrification could play a major role. Methods: Here, we use evidence from an experiment with tomato plants (Solanum lycopersicum) grown in a hydroponic greenhouse setup to further shed light into the process of N2O production based on the N2O isotopocule method and the 15N tracing approach. Gas samples from the headspace of rock wool substrate were collected prior to and after 15N labeling at two occasions using the closed chamber method and analyzed by gas chromatography and stable isotope ratio mass spectrometry. Results: The isotopocule analyses revealed that either heterotrophic bacterial denitrification (bD) or nitrifier denitrification (nD) was the major source of N2O emissions, when a typical nutrient solution with a low ammonium concentration (1-6 mg L-1) was applied. Furthermore, the isotopic shift in 15N site preference and in δ18O values indicated that approximately 80-90% of the N2O produced were already reduced to N2 by denitrifiers inside the rock wool substrate. Despite higher concentrations of ammonium present during the 15N labeling (30-60 mg L-1), results from the 15N tracing approach showed that N2O mainly originated from bD. Both, 15N label supplied in the form of ammonium and 15N label supplied in the form of nitrate, increased the 15N enrichment of N2O. This pointed to the contribution of other processes than bD. Nitrification activity was indicated by the conversion of small amounts of 15N-labeled ammonium into nitrate. Discussion/Conclusion: Comparing the results from N2O isotopocule analyses and the 15N tracing approach, likely a combination of bD, nD, and coupled nitrification and denitrification (cND) was responsible for the vast part of N2O emissions observed in this study. Overall, our findings help to better understand the processes underlying N2O and N2 emissions from hydroponic tomato cultivation, and thereby facilitate the development of targeted N2O mitigation measures.

8.
Nature ; 436(7050): 546-9, 2005 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-16049486

RESUMO

Speciation in animals is almost always envisioned as the split of an existing lineage into an ancestral and a derived species. An alternative speciation route is homoploid hybrid speciation in which two ancestral taxa give rise to a third, derived, species by hybridization without a change in chromosome number. Although theoretically possible it has been regarded as rare and hence of little importance in animals. On the basis of molecular and chromosomal evidence, hybridization is the best explanation for the origin of a handful of extant diploid bisexual animal taxa. Here we report the first case in which hybridization between two host-specific animals (tephritid fruitflies) is clearly associated with the shift to a new resource. Such a hybrid host shift presents an ecologically robust scenario for animal hybrid speciation because it offers a potential mechanism for reproductive isolation through differential adaptation to a new ecological niche. The necessary conditions for this mechanism of speciation are common in parasitic animals, which represent much of animal diversity. The frequency of homoploid hybrid speciation in animals may therefore be higher than previously assumed.


Assuntos
Evolução Biológica , Dípteros/genética , Dípteros/fisiologia , Hibridização Genética/genética , Plantas/parasitologia , Adaptação Fisiológica/genética , Alelos , Animais , Núcleo Celular/genética , DNA Mitocondrial/genética , Dípteros/classificação , Feminino , Frequência do Gene , Masculino , Especificidade da Espécie , Fatores de Tempo
9.
Mycorrhiza ; 21(5): 341-349, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21063890

RESUMO

Arbuscular mycorrhizal (AM) fungi influence the expression of defence-related genes in roots and can cause systemic resistance in plants probably due to the induced expression of specific defence proteins. Among the different groups of defence proteins, plant food allergens were identified. We hypothesized that tomato-allergic patients differently react to tomatoes derived from plants inoculated or not by mycorrhizal fungi. To test this, two tomato genotypes, wild-type 76R and a nearly isogenic mycorrhizal mutant RMC, were inoculated with the AM fungus Glomus mosseae or not under conditions similar to horticultural practice. Under such conditions, the AM fungus showed only a very low colonisation rate, but still was able to increase shoot growth of the wild-type 76R. Nearly no colonisation was observed in the mutant RMC, and shoot development was also not affected. Root fresh weights were diminished in AM-inoculated plants of both genotypes compared to the corresponding controls. No mycorrhizal effects were observed on the biomass and the concentration of phosphate and nitrogen in fruits. Real-time quantitative polymerase chain reaction analysis revealed that six among eight genes encoding for putative allergens showed a significant induced RNA accumulation in fruits of AM-colonised plants. However, human skin reactivity tests using mixed samples of tomato fruits from the AM-inoculated and control plants showed no differences. Our data indicate that AM colonisation under conditions close to horticultural practice can induce the expression of allergen-encoding genes in fruits, but this does not lead necessarily to a higher allergenic potential.


Assuntos
Antígenos de Plantas/imunologia , Hipersensibilidade Alimentar/imunologia , Glomeromycota/crescimento & desenvolvimento , Micorrizas/crescimento & desenvolvimento , Solanum lycopersicum/imunologia , Solanum lycopersicum/microbiologia , Adulto , Antígenos de Plantas/genética , Feminino , Frutas/genética , Frutas/crescimento & desenvolvimento , Frutas/imunologia , Frutas/microbiologia , Regulação da Expressão Gênica de Plantas , Glomeromycota/genética , Glomeromycota/isolamento & purificação , Humanos , Técnicas In Vitro , Solanum lycopersicum/genética , Solanum lycopersicum/crescimento & desenvolvimento , Masculino , Micorrizas/genética , Micorrizas/isolamento & purificação , Adulto Jovem
10.
J Sci Food Agric ; 91(12): 2234-40, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21769872

RESUMO

BACKGROUND: Food allergies are increasing in the European population. At present the onset of symptoms can be avoided only by elimination of a particular fruit or vegetable from the diet. A new approach is to develop hypoallergenic food products. This study characterises the allergenic potential of tomatoes, considering cultivation conditions, developmental stages and genotypes, in order to identify hypoallergenic fruits. RESULTS: Patients with a history of tomato allergy were recruited for skin allergy tests. Tomatoes carrying distinct genotypes were grown under various cultivation conditions and harvested at different maturation stages. Cultivation conditions (nitrogen fertilisation, light exposure and plant nutrition) did not affect the skin reactivity in tomato-allergic patients. However, skin reactivity was significantly lower when using green-unripe compared with red-ripe tomatoes and when using landrace cultivars compared with cultivars bred for use in organic horticulture. CONCLUSION: Depending on their genetic background and maturity level, some tomato cultivars elicit positive reactions in tomato-allergic patients in the skin allergy test. This novel finding should pave the way for the development of tomatoes with reduced allergenicity to relieve sufferers of tomato allergy.


Assuntos
Hipersensibilidade Alimentar/etiologia , Hipersensibilidade Alimentar/imunologia , Frutas/efeitos adversos , Interação Gene-Ambiente , Solanum lycopersicum/efeitos adversos , Solanum lycopersicum/genética , Adolescente , Adulto , Idoso , Antígenos de Plantas/efeitos adversos , Antígenos de Plantas/metabolismo , Feminino , Fertilizantes , Hipersensibilidade Alimentar/dietoterapia , Hipersensibilidade Alimentar/fisiopatologia , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Alemanha , Humanos , Imunoglobulina E/análise , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/metabolismo , Masculino , Pessoa de Meia-Idade , Ciclo do Nitrogênio , Agricultura Orgânica , Extratos Vegetais/efeitos adversos , Testes Cutâneos , Adulto Jovem
11.
Environ Sci Pollut Res Int ; 28(42): 59284-59303, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32851526

RESUMO

Soilless culture systems offer an environmentally friendly and resource-efficient alternative to traditional cultivation systems fitting within the scheme of a circular economy. The objective of this research was to examine the sustainable integration of recycling fertilizers in hydroponic cultivation-creating a nutrient cycling concept for horticultural cultivation. Using the nutrient film technique (NFT), three recycling-based fertilizer variants were tested against standard synthetic mineral fertilization as the control, with 11 tomato plants (Solanum lycopersicum L. cv. Pannovy) per replicate (n = 4) and treatment: two nitrified urine-based fertilizers differing in ammonium/nitrate ratio (NH4+:NO3-), namely (1) "Aurin" (AUR) and (2) "Crop" (CRO); as well as (3) an organo-mineral mixture of struvite and vinasse (S+V); and (4) a control (NPK). The closed chamber method was adapted for gas fluxes (N2O, CH4, and CO2) from the root zone. There was no indication in differences of the total shoot biomass fresh matter and uptake of N, P and K between recycling fertilizers and the control. Marketable fruit yield was comparable between NPK, CRO and S+V, whereas lower yields occurred in AUR. The higher NH4+:NO3- of AUR was associated with an increased susceptibility of blossom-end-rot, likely due to reduced uptake and translocation of Ca. Highest sugar concentration was found in S+V, which may have been influenced by the presence of organic acids in vinasse. N2O emissions were highest in S+V, which corresponded to our hypothesis that N2O emissions positively correlate with organic-C input by the fertilizer amendments. Remaining treatments showed barely detectable GHG emissions. A nitrified urine with a low NH4+:NO3- (e.g., CRO) has a high potential as recycling fertilizer in NFT systems for tomato cultivation, and S+V proved to supply sufficient P and K for adequate growth and yield. Alternative cultivation strategies may complement the composition of AUR.


Assuntos
Gases de Efeito Estufa , Solanum lycopersicum , Agricultura , Fertilizantes/análise , Gases de Efeito Estufa/análise , Hidroponia , Nitrogênio/análise , Óxido Nitroso/análise , Solo
12.
Mycorrhiza ; 20(3): 191-200, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19789897

RESUMO

Piriformospora indica is a root endophytic fungus with plant-promoting properties in numerous plant species and induces resistance against root and shoot pathogens in barley, wheat, and Arabidopsis. A study over several years showed that the endophyte P. indica colonised the roots of the most consumed vegetable crop tomato. P. indica improved the growth of tomato resulting in increased biomass of leaves by up to 20%. Limitation of disease severity caused by Verticillium dahliae by more than 30% was observed on tomato plants colonised by the endophyte. Further experiments were carried out in hydroponic cultures which are commonly used for the indoor production of tomatoes in central Europe. After adaptation of inoculation techniques (inoculum density, plant stage), it was shown that P. indica influences the concentration of Pepino mosaic virus in tomato shoots. The outcome of the interaction seems to be affected by light intensity. Most importantly, the endophyte increases tomato fruit biomass in hydroponic culture concerning fresh weight (up to 100%) and dry matter content (up to 20%). Hence, P. indica represents a suitable growth promoting endophyte for tomato which can be applied in production systems of this important vegetable plant not only in soil, but also in hydroponic cultures.


Assuntos
Basidiomycota/crescimento & desenvolvimento , Doenças das Plantas/virologia , Potexvirus/patogenicidade , Solanum lycopersicum/imunologia , Solanum lycopersicum/microbiologia , Biomassa , Europa (Continente) , Frutas/crescimento & desenvolvimento , Solanum lycopersicum/crescimento & desenvolvimento , Brotos de Planta/virologia , Potexvirus/isolamento & purificação
13.
Ecol Evol ; 10(18): 9867-9885, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33005350

RESUMO

Predator-prey interactions are critical in understanding how communities function. However, we need to describe intraspecific variation in diet to accurately depict those interactions. Harbor seals (Phoca vitulina) are an abundant marine predator that prey on species of conservation concern. We estimated intrapopulation feeding diversity (variation in feeding habits between individuals of the same species) of harbor seals in the Salish Sea. Estimates of feeding diversity were examined relative to sex, month, and location using a novel approach that combined molecular techniques, repeated cross-sectional sampling of scat, and a specialization metric (within-individual consistency in diet measured by the Proportional Similarity Index ( P S i )). Based on 1,083 scat samples collected from five haul-out sites during four nonsequential years, we quantified diet using metabarcoding techniques and determined the sex of the scat depositor using a molecular assay. Results suggest that intrapopulation feeding diversity was present. Specialization was high over short periods (24-48 hr, P S i  = 0.392, 95% CI = 0.013, R = 100,000) and variable in time and space. Females showed more specialization than males, particularly during summer and fall. Additionally, demersal and benthic prey species were correlated with more specialized diets. The latter finding suggests that this type of prey likely requires specific foraging strategies and that there are trade-offs between pelagic and benthic foraging styles for harbor seals. This differential feeding on prey species, as well as between sexes of harbor seals, indicates that predator-prey interactions in harbor seals are complex and that each sex may have a different impact on species of conservation concern. As such, describing intrapopulation feeding diversity may unravel hitherto unknown complex predator-prey interactions in the community.

14.
Evolution ; 74(1): 156-168, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31729753

RESUMO

Ecological speciation via host-shifting is often invoked as a mechanism for insect diversification, but the relative importance of this process is poorly understood. The shift of Rhagoletis pomonella in the 1850s from the native downy hawthorn, Crataegus mollis, to introduced apple, Malus pumila, is a classic example of sympatric host race formation, a hypothesized early stage of ecological speciation. The accidental human-mediated introduction of R. pomonella into the Pacific Northwest (PNW) in the late 1970s allows us to investigate how novel ecological opportunities may trigger divergent adaptation and host race formation on a rapid timescale. Since the introduction, the fly has spread in the PNW, where in addition to apple, it now infests native black hawthorn, Crataegus douglasii, and introduced ornamental hawthorn, Crataegus monogyna. We use this "natural experiment" to test for genetic differentiation among apple, black, and ornamental hawthorn flies co-occurring at three sympatric sites. We report evidence that populations of all three host-associations are genetically differentiated at the local level, indicating that partial reproductive isolation has evolved in this novel habitat. Our results suggest that conditions suitable for initiating host-associated divergence may be common in nature, allowing for the rapid evolution of new host races when ecological opportunity arises.


Assuntos
Crataegus , Herbivoria , Malus , Isolamento Reprodutivo , Simpatria , Tephritidae/fisiologia , Animais , Espécies Introduzidas , Washington
15.
BMC Genomics ; 10: 633, 2009 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-20035631

RESUMO

BACKGROUND: The full power of modern genetics has been applied to the study of speciation in only a small handful of genetic model species--all of which speciated allopatrically. Here we report the first large expressed sequence tag (EST) study of a candidate for ecological sympatric speciation, the apple maggot Rhagoletis pomonella, using massively parallel pyrosequencing on the Roche 454-FLX platform. To maximize transcript diversity we created and sequenced separate libraries from larvae, pupae, adult heads, and headless adult bodies. RESULTS: We obtained 239,531 sequences which assembled into 24,373 contigs. A total of 6810 unique protein coding genes were identified among the contigs and long singletons, corresponding to 48% of all known Drosophila melanogaster protein-coding genes. Their distribution across GO classes suggests that we have obtained a representative sample of the transcriptome. Among these sequences are many candidates for potential R. pomonella "speciation genes" (or "barrier genes") such as those controlling chemosensory and life-history timing processes. Furthermore, we identified important marker loci including more than 40,000 single nucleotide polymorphisms (SNPs) and over 100 microsatellites. An initial search for SNPs at which the apple and hawthorn host races differ suggested at least 75 loci warranting further work. We also determined that developmental expression differences remained even after normalization; transcripts expected to show different expression levels between larvae and pupae in D. melanogaster also did so in R. pomonella. Preliminary comparative analysis of transcript presences and absences revealed evidence of gene loss in Drosophila and gain in the higher dipteran clade Schizophora. CONCLUSIONS: These data provide a much needed resource for exploring mechanisms of divergence in this important model for sympatric ecological speciation. Our description of ESTs from a substantial portion of the R. pomonella transcriptome will facilitate future functional studies of candidate genes for olfaction and diapause-related life history timing, and will enable large scale expression studies. Similarly, the identification of new SNP and microsatellite markers will facilitate future population and quantitative genetic studies of divergence between the apple and hawthorn-infesting host races.


Assuntos
Perfilação da Expressão Gênica , Especiação Genética , Tephritidae/genética , Animais , Hibridização Genômica Comparativa , Mapeamento de Sequências Contíguas , Drosophila/genética , Etiquetas de Sequências Expressas , Biblioteca Gênica , Genes de Insetos , Marcadores Genéticos , Genoma de Inseto , Larva/genética , Repetições de Microssatélites , Polimorfismo de Nucleotídeo Único , Alinhamento de Sequência , Análise de Sequência de DNA/métodos
16.
Front Plant Sci ; 10: 371, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30972096

RESUMO

We evaluated the effects of phosphate (Pi-deficiency: 0.1 mM; Pi-sufficiency: 0.5 mM), phosphite (low-Phi: 0.1 mM; medium-Phi: 0.5 mM; and high-Phi: 2.5 mM), and two mean daily photosynthetically active radiations (lower PAR: 22.2 mol ⋅ m-2 ⋅ d-1; higher PAR: 29.7 mol ⋅ m-2 ⋅ d-1), as well as their interactions, on flavonoid, nitrate and glucosinolate (GL) concentrations and growth characteristics in hydroponically grown Brassica campestris cv. Mibuna Early and Brassica juncea cv. Red Giant. As expected, higher PAR increased dry matter and contrariwise decreased number of leaves but only in B. campestris. Total flavonoid and individual flavonoid compounds increased with the higher PAR value in B. campestris. Pi-sufficiency resulted in a lower quercetin concentration in both species, the isorhamnetin and total flavonoid concentrations in B. campestris, and the cyanidin concentration in B. juncea, in comparison to Pi-deficiency. Similarly, Pi-sufficient plants exhibited lower GL concentration, especially alkyl-GLs in B. campestris and alkenyl-GLs and an aryl-GL in B. juncea. Pi did not affect the nitrate concentration in either species, and nor did Phi influence the flavonoid concentrations in either species. In B. campestris, medium Phi (0.5 mM) increased the 1-methoxyindol-3-ylmethyl GL concentration by 28.3%, as compared to that observed at low Phi. In B. juncea, high Phi level increased the but-3-enyl-GL concentration by 18.9%, in comparison to values recorded at medium Phi. B. campestris plants exposed to higher PAR increased total flavonoids concentration. In both Brassica species, higher PAR stimulated the alkyl-, alkenyl-, and indole-GLs. The interaction of lower PAR and increasing Phi significantly decreased flavonoid concentration in B. juncea, whereas increasing Phi at higher PAR increased such concentration in this species. The same combination reduced the concentration of 2-phenylethyl- and indol-3-ylmethyl-GL in B. juncea. The highest indol-3-ylmethyl-GL concentration was observed when Pi was deficient combined with medium Phi in B. juncea. Thus, PAR, Pi and Phi may modulate flavonoid, GL and nitrate concentrations in Brassica species, which may be a useful tool to improve the nutraceutical quality of these leafy vegetables if properly managed.

17.
J Agric Food Chem ; 56(10): 3538-45, 2008 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-18457399

RESUMO

The aim of the present study was to test whether variations in the root environment affect the content of health-related organosulfur compounds, total phenolic compounds, and flavonol glycoside concentrations in onions. For this purpose, greenhouse-grown onions ( Allium cepa L.) were either inoculated with a commercial arbuscular mycorrhizal inoculum or a sterile inoculum and were provided with two NH(4)(+):NO(3)(-) ratios as a nitrogen source. Onion growth, arbuscular mycorrhizal colonization rate, sugars, and nutrient element concentrations were also quantified. The plant antioxidant activity and quercetin monoglucoside and organosulfur compound concentrations increased with dominant nitrate supply. Furthermore, mycorrhizal colonization increased the antioxidant activity and also concentrations of the major quercetin glucosides. The present study provides clear evidence that antioxidant activity, quercetin glycosides, and organosulfur compounds can be increased in sufficiently supplied onion plants by dominant nitrate supply or application of arbuscular mycorrhizal fungi. This was probably due to increased precursor production and induced defense mechanisms.


Assuntos
Micorrizas/crescimento & desenvolvimento , Nitratos/administração & dosagem , Cebolas/química , Cebolas/microbiologia , Fenóis/análise , Compostos de Enxofre/análise , Antioxidantes/análise , Flavonóis/análise , Minerais/análise , Cebolas/crescimento & desenvolvimento , Raízes de Plantas/química , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia
18.
Ecol Evol ; 8(19): 9889-9905, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30386584

RESUMO

Sex-specific diet information is important in the determination of predator impacts on prey populations. Unfortunately, the diet of males and females can be difficult to describe, particularly when they are marine predators. We combined two molecular techniques to describe haul-out use and prey preferences of male and female harbor seals (Phoca vitulina) from Comox and Cowichan Bay (Canada) during 2012-2013. DNA metabarcoding quantified the diet proportions comprised of prey species in harbor seal scat, and qPCR determined the sex of the individual that deposited each scat. Using 287 female and 260 male samples, we compared the monthly sex ratio with GLMs and analyzed prey consumption relative to sex, season, site, and year with PERMANOVA. The sex ratio between monthly samples differed widely in both years (range = 12%-79% males) and showed different patterns at each haul-out site. Male and female diet differed across both years and sites: Females consumed a high proportion of demersal fish species while males consumed more salmonid species. Diet composition was related to both sex and season (PERMANOVA: R 2 = 27%, p < 0.001; R 2 = 24%, p < 0.001, respectively) and their interaction (PERMANOVA: R 2 = 11%, p < 0.001). Diet differences between males and females were consistent across site and year, suggesting fundamental foraging differences, including that males may have a larger impact on salmonids than females. Our novel combination of techniques allowed for both prey taxonomic and spatiotemporal resolution unprecedented in marine predators.

19.
Evolution ; 61(2): 245-56, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17348936

RESUMO

Homoploid hybrid speciation--speciation via hybridization without a change in chromosome number--is rarely documented and poorly understood in animals. In particular, the mechanisms by which animal homoploid hybrid species become ecologically and reproductively isolated from their parents are hypothetical and remain largely untested by experiments. For the many host-specific parasites that mate on their host, choosing the right host is the most important ecological and reproductive barrier between these species. One example of a host-specific parasite is the Lonicera fly, a population of tephritid fruit flies that evolved within the last 250 years likely by hybridization between two native Rhagoletis species following a host shift to invasive honeysuckle. We studied the host preference of the Lonicera fly and its putative parent species in laboratory experiments. The Lonicera fly prefers its new host, introduced honeysuckle, over the hosts of both parental species, demonstrating the rapid acquisition of preference for a new host as a means of behavioral isolation from the parent species. The parent taxa discriminate against each other's native hosts, but both accept honeysuckle fruit, leaving the potential for asymmetric gene flow from the parent species. Importantly, this pattern allows us to formulate hypotheses about the initial formation of the Lonicera fly. As mating partners from the two parent taxa are more likely to meet on invasive honeysuckle than on their respective native hosts, independent acceptance of honeysuckle by both parents likely preceded hybridization. We propose that invasive honeysuckle served as a catalyst for the local breakdown of reproductive isolation between the native parent species, a novel consequence of the introduction of an exotic weed. We describe behavioral mechanisms that explain the initial hybridization and subsequent reproductive isolation of the hybrid Lonicera fly. These results provide experimental support for a combination of host shift and hybridization as a model for hybrid speciation in parasitic animals.


Assuntos
Ecossistema , Especiação Genética , Hibridização Genética , Lonicera/parasitologia , Tephritidae/genética , Tephritidae/fisiologia , Animais , Mirtilos Azuis (Planta)/parasitologia , Comportamento Alimentar , Feminino , Frutas , Oviposição
20.
Mol Ecol Resour ; 17(2): 267-277, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27488501

RESUMO

Individual-based data sets tracking organisms over space and time are fundamental to answering broad questions in ecology and evolution. A 'permanent' genetic tag circumvents a need to invasively mark or tag animals, especially if there are little phenotypic differences among individuals. However, genetic tracking of individuals does not come without its limits; correctly matching genotypes and error rates associated with laboratory work can make it difficult to parse out matched individuals. In addition, defining a sampling design that effectively matches individuals in the wild can be a challenge for researchers. Here, we combine the two objectives of defining sampling design and reducing genotyping error through an efficient Python-based computer-modelling program, wisepair. We describe the methods used to develop the computer program and assess its effectiveness through three empirical data sets, with and without reference genotypes. Our results show that wisepair outperformed similar genotype matching programs using previously published from reference genotype data of diurnal poison frogs (Allobates femoralis) and without-reference (faecal) genotype sample data sets of harbour seals (Phoca vitulina) and Eurasian otters (Lutra lutra). In addition, due to limited sampling effort in the harbour seal data, we present optimal sampling designs for future projects. wisepair allows for minimal sacrifice in the available methods as it incorporates sample rerun error data, allelic pairwise comparisons and probabilistic simulations to determine matching thresholds. Our program is the lone tool available to researchers to define parameters a priori for genetic tracking studies.


Assuntos
Biologia Computacional/métodos , Técnicas de Genotipagem/métodos , Software , Animais , Anuros/classificação , Anuros/genética , Genótipo , Lontras/classificação , Lontras/genética , Phoca/classificação , Phoca/genética , Homologia de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA