Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 545(7654): 323-326, 2017 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-28516933

RESUMO

Quantum systems can be characterized by their correlations. Higher-order (larger than second order) correlations, and the ways in which they can be decomposed into correlations of lower order, provide important information about the system, its structure, its interactions and its complexity. The measurement of such correlation functions is therefore an essential tool for reading, verifying and characterizing quantum simulations. Although higher-order correlation functions are frequently used in theoretical calculations, so far mainly correlations up to second order have been studied experimentally. Here we study a pair of tunnel-coupled one-dimensional atomic superfluids and characterize the corresponding quantum many-body problem by measuring correlation functions. We extract phase correlation functions up to tenth order from interference patterns and analyse whether, and under what conditions, these functions factorize into correlations of lower order. This analysis characterizes the essential features of our system, the relevant quasiparticles, their interactions and topologically distinct vacua. From our data we conclude that in thermal equilibrium our system can be seen as a quantum simulator of the sine-Gordon model, relevant for diverse disciplines ranging from particle physics to condensed matter. The measurement and evaluation of higher-order correlation functions can easily be generalized to other systems and to study correlations of any other observable such as density, spin and magnetization. It therefore represents a general method for analysing quantum many-body systems from experimental data.

2.
Phys Rev Lett ; 129(8): 080402, 2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-36053681

RESUMO

We study Floquet engineering of the tunnel coupling between a pair of one-dimensional bosonic quasicondensates in a tilted double-well potential. By modulating the energy difference between the two wells, we reestablish tunnel coupling and precisely control its amplitude and phase. This allows us to initiate coherence between two initially uncorrelated Bose gases and prepare different initial states in the emerging sine-Gordon Hamiltonian. We fully characterize the Floquet system and study the dependence of both equilibrium properties and relaxation on the modulation.

3.
Opt Express ; 27(23): 33474-33487, 2019 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-31878416

RESUMO

We use laser light shaped by a digital micro-mirror device to realize arbitrary optical dipole potentials for one-dimensional (1D) degenerate Bose gases of 87Rb trapped on an atom chip. Superposing optical and magnetic potentials combines the high flexibility of optical dipole traps with the advantages of magnetic trapping, such as effective evaporative cooling and the application of radio-frequency dressed state potentials. As applications, we present a 160 µm long box-like potential with a central tuneable barrier, a box-like potential with a sinusoidally modulated bottom and a linear confining potential. These potentials provide new tools to investigate the dynamics of 1D quantum systems and will allow us to address exciting questions in quantum thermodynamics and quantum simulations.

4.
Science ; 360(6386): 307-310, 2018 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-29472440

RESUMO

The complexity of interacting quantum many-body systems leads to exceedingly long recurrence times of the initial quantum state for all but the smallest systems. For large systems, one cannot probe the full quantum state in all its details. Thus, experimentally, recurrences can only be determined on the level of the accessible observables. Realizing a commensurate spectrum of collective excitations in one-dimensional superfluids, we demonstrate recurrences of coherence and long-range order in an interacting quantum many-body system containing thousands of particles. Our findings will enable the study of the coherent dynamics of large quantum systems even after they have reached a transient thermal-like state.

5.
Science ; 348(6231): 207-11, 2015 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-25859041

RESUMO

The description of the non-equilibrium dynamics of isolated quantum many-body systems within the framework of statistical mechanics is a fundamental open question. Conventional thermodynamical ensembles fail to describe the large class of systems that exhibit nontrivial conserved quantities, and generalized ensembles have been predicted to maximize entropy in these systems. We show experimentally that a degenerate one-dimensional Bose gas relaxes to a state that can be described by such a generalized ensemble. This is verified through a detailed study of correlation functions up to 10th order. The applicability of the generalized ensemble description for isolated quantum many-body systems points to a natural emergence of classical statistical properties from the microscopic unitary quantum evolution.

6.
Phys Rev E Stat Nonlin Soft Matter Phys ; 84(1 Pt 2): 016202, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21867268

RESUMO

We study the nontrivial clustering properties of extreme or recurrent events in the context of deterministic chaotic systems. We find that correlations between return times of such events can depend nonmonotonically on the threshold used to define the events, which leads to counterintuitive behavior. In particular, the distribution of the conditional return intervals can indicate clustering as well as repelling of extreme events for the same condition but different thresholds-in sharp contrast to what has been observed for stochastic processes with long-range correlations as well as for independent and identically distributed random variables. This has important implications for the time-dependent hazard assessment of extreme events, indicating that possible threshold dependencies should always be taken into account.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA