Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Neurobiol Dis ; 196: 106506, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38648865

RESUMO

Imbalances of iron and dopamine metabolism along with mitochondrial dysfunction have been linked to the pathogenesis of Parkinson's disease (PD). We have previously suggested a direct link between iron homeostasis and dopamine metabolism, as dopamine can increase cellular uptake of iron into macrophages thereby promoting oxidative stress responses. In this study, we investigated the interplay between iron, dopamine, and mitochondrial activity in neuroblastoma SH-SY5Y cells and human induced pluripotent stem cell (hiPSC)-derived dopaminergic neurons differentiated from a healthy control and a PD patient with a mutation in the α-synuclein (SNCA) gene. In SH-SY5Y cells, dopamine treatment resulted in increased expression of the transmembrane iron transporters transferrin receptor 1 (TFR1), ferroportin (FPN), and mitoferrin2 (MFRN2) and intracellular iron accumulation, suggesting that dopamine may promote iron uptake. Furthermore, dopamine supplementation led to reduced mitochondrial fitness including decreased mitochondrial respiration, increased cytochrome c control efficiency, reduced mtDNA copy number and citrate synthase activity, increased oxidative stress and impaired aconitase activity. In dopaminergic neurons derived from a healthy control individual, dopamine showed comparable effects as observed in SH-SY5Y cells. The hiPSC-derived PD neurons harboring an endogenous SNCA mutation demonstrated altered mitochondrial iron homeostasis, reduced mitochondrial capacity along with increased oxidative stress and alterations of tricarboxylic acid cycle linked metabolic pathways compared with control neurons. Importantly, dopamine treatment of PD neurons promoted a rescue effect by increasing mitochondrial respiration, activating antioxidant stress response, and normalizing altered metabolite levels linked to mitochondrial function. These observations provide evidence that dopamine affects iron homeostasis, intracellular stress responses and mitochondrial function in healthy cells, while dopamine supplementation can restore the disturbed regulatory network in PD cells.


Assuntos
Dopamina , Neurônios Dopaminérgicos , Homeostase , Ferro , Mitocôndrias , Doença de Parkinson , alfa-Sinucleína , Humanos , Ferro/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Homeostase/fisiologia , Homeostase/efeitos dos fármacos , Doença de Parkinson/metabolismo , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , alfa-Sinucleína/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Linhagem Celular Tumoral , Estresse Oxidativo/fisiologia , Estresse Oxidativo/efeitos dos fármacos
2.
Environ Sci Technol ; 58(9): 4181-4192, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38373301

RESUMO

Alzheimer's disease (AD) is a complex and multifactorial neurodegenerative disease, which is currently diagnosed via clinical symptoms and nonspecific biomarkers (such as Aß1-42, t-Tau, and p-Tau) measured in cerebrospinal fluid (CSF), which alone do not provide sufficient insights into disease progression. In this pilot study, these biomarkers were complemented with small-molecule analysis using non-target high-resolution mass spectrometry coupled with liquid chromatography (LC) on the CSF of three groups: AD, mild cognitive impairment (MCI) due to AD, and a non-demented (ND) control group. An open-source cheminformatics pipeline based on MS-DIAL and patRoon was enhanced using CSF- and AD-specific suspect lists to assist in data interpretation. Chemical Similarity Enrichment Analysis revealed a significant increase of hydroxybutyrates in AD, including 3-hydroxybutanoic acid, which was found at higher levels in AD compared to MCI and ND. Furthermore, a highly sensitive target LC-MS method was used to quantify 35 bile acids (BAs) in the CSF, revealing several statistically significant differences including higher dehydrolithocholic acid levels and decreased conjugated BA levels in AD. This work provides several promising small-molecule hypotheses that could be used to help track the progression of AD in CSF samples.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Doenças Neurodegenerativas , Humanos , Doença de Alzheimer/líquido cefalorraquidiano , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/psicologia , Proteínas tau/líquido cefalorraquidiano , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Projetos Piloto , Disfunção Cognitiva/líquido cefalorraquidiano , Disfunção Cognitiva/diagnóstico , Disfunção Cognitiva/psicologia , Biomarcadores , Progressão da Doença
3.
Environ Sci Technol ; 58(18): 7710-7718, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38656189

RESUMO

When chemical pollutants enter the environment, they can undergo diverse transformation processes, forming a wide range of transformation products (TPs), some of them benign and others more harmful than their precursors. To date, the majority of TPs remain largely unrecognized and unregulated, particularly as TPs are generally not part of routine chemical risk or hazard assessment. Since many TPs formed from oxidative processes are more polar than their precursors, they may be especially relevant in the context of persistent, mobile, and toxic (PMT) and very persistent and very mobile (vPvM) substances, which are two new hazard classes that have recently been established on a European level. We highlight herein that as a result, TPs deserve more attention in research, chemicals regulation, and chemicals management. This perspective summarizes the main challenges preventing a better integration of TPs in these areas: (1) the lack of reliable high-throughput TP identification methods, (2) uncertainties in TP prediction, (3) inadequately considered TP formation during (advanced) water treatment, and (4) insufficient integration and harmonization of TPs in most regulatory frameworks. A way forward to tackle these challenges and integrate TPs into chemical management is proposed.


Assuntos
Poluentes Ambientais , Medição de Risco
4.
Environ Sci Technol ; 58(17): 7256-7269, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38641325

RESUMO

Through investigating the combined impact of the environmental exposures experienced by an individual throughout their lifetime, exposome research provides opportunities to understand and mitigate negative health outcomes. While current exposome research is driven by epidemiological studies that identify associations between exposures and effects, new frameworks integrating more substantial population-level metadata, including electronic health and administrative records, will shed further light on characterizing environmental exposure risks. Molecular biology offers methods and concepts to study the biological and health impacts of exposomes in experimental and computational systems. Of particular importance is the growing use of omics readouts in epidemiological and clinical studies. This paper calls for the adoption of mechanistic molecular biology approaches in exposome research as an essential step in understanding the genotype and exposure interactions underlying human phenotypes. A series of recommendations are presented to make the necessary and appropriate steps to move from exposure association to causation, with a huge potential to inform precision medicine and population health. This includes establishing hypothesis-driven laboratory testing within the exposome field, supported by appropriate methods to read across from model systems research to human.


Assuntos
Exposição Ambiental , Expossoma , Humanos , Biologia Molecular
5.
Environ Sci Technol ; 57(44): 16918-16928, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37871188

RESUMO

Per- and polyfluoroalkyl substances (PFAS) are of high concern, with calls to regulate them as a class. In 2021, the Organisation for Economic Co-operation and Development (OECD) revised the definition of PFAS to include any chemical containing at least one saturated CF2 or CF3 moiety. The consequence is that one of the largest open chemical collections, PubChem, with 116 million compounds, now contains over 7 million PFAS under this revised definition. These numbers are several orders of magnitude higher than previously established PFAS lists (typically thousands of entries) and pose an incredible challenge to researchers and computational workflows alike. This article describes a dynamic, openly accessible effort to navigate and explore the >7 million PFAS and >21 million fluorinated compounds (September 2023) in PubChem by establishing the "PFAS and Fluorinated Compounds in PubChem" Classification Browser (or "PubChem PFAS Tree"). A total of 36500 nodes support browsing of the content according to several categories, including classification, structural properties, regulatory status, or presence in existing PFAS suspect lists. Additional annotation and associated data can be used to create subsets (and thus manageable suspect lists or databases) of interest for a wide range of environmental, regulatory, exposomics, and other applications.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Bases de Dados Factuais , Árvores
6.
Anal Bioanal Chem ; 415(17): 3415-3434, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37212869

RESUMO

Identifying metabolites in model organisms is critical for many areas of biology, including unravelling disease aetiology or elucidating functions of putative enzymes. Even now, hundreds of predicted metabolic genes in Saccharomyces cerevisiae remain uncharacterized, indicating that our understanding of metabolism is far from complete even in well-characterized organisms. While untargeted high-resolution mass spectrometry (HRMS) enables the detection of thousands of features per analysis, many of these have a non-biological origin. Stable isotope labelling (SIL) approaches can serve as credentialing strategies to distinguish biologically relevant features from background signals, but implementing these experiments at large scale remains challenging. Here, we developed a SIL-based approach for high-throughput untargeted metabolomics in S. cerevisiae, including deep-48 well format-based cultivation and metabolite extraction, building on the peak annotation and verification engine (PAVE) tool. Aqueous and nonpolar extracts were analysed using HILIC and RP liquid chromatography, respectively, coupled to Orbitrap Q Exactive HF mass spectrometry. Of the approximately 37,000 total detected features, only 3-7% of the features were credentialed and used for data analysis with open-source software such as MS-DIAL, MetFrag, Shinyscreen, SIRIUS CSI:FingerID, and MetaboAnalyst, leading to the successful annotation of 198 metabolites using MS2 database matching. Comparable metabolic profiles were observed for wild-type and sdh1Δ yeast strains grown in deep-48 well plates versus the classical shake flask format, including the expected increase in intracellular succinate concentration in the sdh1Δ strain. The described approach enables high-throughput yeast cultivation and credentialing-based untargeted metabolomics, providing a means to efficiently perform molecular phenotypic screens and help complete metabolic networks.


Assuntos
Metabolômica , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Metabolômica/métodos , Metaboloma , Cromatografia Líquida , Espectrometria de Massas , Cromatografia Líquida de Alta Pressão/métodos
7.
Environ Sci Technol ; 56(12): 7448-7466, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35533312

RESUMO

Substances of unknown or variable composition, complex reaction products, or biological materials (UVCBs) are over 70 000 "complex" chemical mixtures produced and used at significant levels worldwide. Due to their unknown or variable composition, applying chemical assessments originally developed for individual compounds to UVCBs is challenging, which impedes sound management of these substances. Across the analytical sciences, toxicology, cheminformatics, and regulatory practice, new approaches addressing specific aspects of UVCB assessment are being developed, albeit in a fragmented manner. This review attempts to convey the "big picture" of the state of the art in dealing with UVCBs by holistically examining UVCB characterization and chemical identity representation, as well as hazard, exposure, and risk assessment. Overall, information gaps on chemical identities underpin the fundamental challenges concerning UVCBs, and better reporting and substance characterization efforts are needed to support subsequent chemical assessments. To this end, an information level scheme for improved UVCB data collection and management within databases is proposed. The development of UVCB testing shows early progress, in line with three main methods: whole substance, known constituents, and fraction profiling. For toxicity assessment, one option is a whole-mixture testing approach. If the identities of (many) constituents are known, grouping, read across, and mixture toxicity modeling represent complementary approaches to overcome data gaps in toxicity assessment. This review highlights continued needs for concerted efforts from all stakeholders to ensure proper assessment and sound management of UVCBs.


Assuntos
Petróleo , Misturas Complexas , Petróleo/toxicidade , Medição de Risco
8.
Anal Bioanal Chem ; 414(25): 7399-7419, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35829770

RESUMO

Parkinson's disease (PD) is the second most prevalent neurodegenerative disease, with an increasing incidence in recent years due to the aging population. Genetic mutations alone only explain <10% of PD cases, while environmental factors, including small molecules, may play a significant role in PD. In the present work, 22 plasma (11 PD, 11 control) and 19 feces samples (10 PD, 9 control) were analyzed by non-target high-resolution mass spectrometry (NT-HRMS) coupled to two liquid chromatography (LC) methods (reversed-phase (RP) and hydrophilic interaction liquid chromatography (HILIC)). A cheminformatics workflow was optimized using open software (MS-DIAL and patRoon) and open databases (all public MSP-formatted spectral libraries for MS-DIAL, PubChemLite for Exposomics, and the LITMINEDNEURO list for patRoon). Furthermore, five disease-specific databases and three suspect lists (on PD and related disorders) were developed, using PubChem functionality to identifying relevant unknown chemicals. The results showed that non-target screening with the larger databases generally provided better results compared with smaller suspect lists. However, two suspect screening approaches with patRoon were also good options to study specific chemicals in PD. The combination of chromatographic methods (RP and HILIC) as well as two ionization modes (positive and negative) enhanced the coverage of chemicals in the biological samples. While most metabolomics studies in PD have focused on blood and cerebrospinal fluid, we found a higher number of relevant features in feces, such as alanine betaine or nicotinamide, which can be directly metabolized by gut microbiota. This highlights the potential role of gut dysbiosis in PD development.


Assuntos
Expossoma , Doenças Neurodegenerativas , Doença de Parkinson , Idoso , Alanina , Betaína , Quimioinformática , Humanos , Metaboloma , Metabolômica/métodos , Niacinamida , Projetos Piloto
9.
Molecules ; 27(8)2022 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-35458780

RESUMO

Pooled quality controls (QCs) are usually implemented within untargeted methods to improve the quality of datasets by removing features either not detected or not reproducible. However, this approach can be limiting in exposomics studies conducted on groups of exposed and nonexposed subjects, as compounds present at low levels only in exposed subjects can be diluted and thus not detected in the pooled QC. The aim of this work is to develop and apply an untargeted workflow for human biomonitoring in urine samples, implementing a novel separated approach for preparing pooled quality controls. An LC-MS/MS workflow was developed and applied to a case study of smoking and non-smoking subjects. Three different pooled quality controls were prepared: mixing an aliquot from every sample (QC-T), only from non-smokers (QC-NS), and only from smokers (QC-S). The feature tables were filtered using QC-T (T-feature list), QC-S, and QC-NS, separately. The last two feature lists were merged (SNS-feature list). A higher number of features was obtained with the SNS-feature list than the T-feature list, resulting in identification of a higher number of biologically significant compounds. The separated pooled QC strategy implemented can improve the nontargeted human biomonitoring for groups of exposed and nonexposed subjects.


Assuntos
Metabolômica , Espectrometria de Massas em Tandem , Cromatografia Líquida/métodos , Humanos , Metabolômica/métodos , Controle de Qualidade , Espectrometria de Massas em Tandem/métodos , Fluxo de Trabalho
10.
Anal Chem ; 93(33): 11601-11611, 2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34382770

RESUMO

There is an increasing need for comparable and harmonized retention times (tR) in liquid chromatography (LC) among different laboratories, to provide supplementary evidence for the identity of compounds in high-resolution mass spectrometry (HRMS)-based suspect and nontarget screening investigations. In this study, a rigorously tested, flexible, and less system-dependent unified retention time index (RTI) approach for LC is presented, based on the calibration of the elution pattern. Two sets of 18 calibrants were selected for each of ESI+ and ESI-based on the maximum overlap with the retention times and chemical similarity indices from a total set of 2123 compounds. The resulting calibration set, with RTI set to range between 1 and 1000, was proposed as the most appropriate RTI system after rigorous evaluation, coordinated by the NORMAN network. The validation of the proposed RTI system was done externally on different instrumentation and LC conditions. The RTI can also be used to check the reproducibility and quality of LC conditions. Two quantitative structure-retention relationship (QSRR)-based models were built based on the developed RTI systems, which assist in the removal of false-positive annotations. The applicability domains of the QSRR models allowed completing the identification process with higher confidence for substances within the domain, while indicating those substances for which results should be treated with caution. The proposed RTI system was used to improve confidence in suspect and nontarget screening and increase the comparability between laboratories as demonstrated for two examples. All RTI-related calculations can be performed online at http://rti.chem.uoa.gr/.


Assuntos
Reprodutibilidade dos Testes , Calibragem , Cromatografia Líquida , Espectrometria de Massas
11.
Environ Sci Technol ; 54(23): 15120-15131, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33207875

RESUMO

Currently, the most powerful approach to monitor organic micropollutants (OMPs) in environmental samples is the combination of target, suspect, and nontarget screening strategies using high-resolution mass spectrometry (HRMS). However, the high complexity of sample matrices and the huge number of OMPs potentially present in samples at low concentrations pose an analytical challenge. Ion mobility separation (IMS) combined with HRMS instruments (IMS-HRMS) introduces an additional analytical dimension, providing extra information, which facilitates the identification of OMPs. The collision cross-section (CCS) value provided by IMS is unaffected by the matrix or chromatographic separation. Consequently, the creation of CCS databases and the inclusion of ion mobility within identification criteria are of high interest for an enhanced and robust screening strategy. In this work, a CCS library for IMS-HRMS, which is online and freely available, was developed for 556 OMPs in both positive and negative ionization modes using electrospray ionization. The inclusion of ion mobility data in widely adopted confidence levels for identification in environmental reporting is discussed. Illustrative examples of OMPs found in environmental samples are presented to highlight the potential of IMS-HRMS and to demonstrate the additional value of CCS data in various screening strategies.


Assuntos
Espectrometria de Mobilidade Iônica , Espectrometria de Massas , Peso Molecular , Fluxo de Trabalho
12.
Anal Bioanal Chem ; 412(20): 4931-4939, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32494915

RESUMO

Non-targeted analysis (NTA) is a rapidly evolving analytical technique with numerous opportunities to improve and expand instrumental and data analysis methods. In this work, NTA was performed on eight synthetic mixtures containing 1264 unique chemical substances from the U.S. Environmental Protection Agency's Non-Targeted Analysis Collaborative Trial (ENTACT). These mixtures were analyzed by atmospheric pressure chemical ionization (APCI) and electrospray ionization (ESI) using both positive and negative polarities for a total of four modes. Out of the 1264 ENTACT chemical substances, 1116 were detected in at least one ionization mode, 185 chemicals were detected using all four ionization modes, whereas 148 were not detected. Forty-four chemicals were detected only by APCI, and 181 were detected only by ESI. Molecular descriptors and physicochemical properties were used to assess which ionization type was preferred for a given compound. One ToxPrint substructure (naphthalene group) was found to be enriched in compounds only detected using APCI, and eight ToxPrints (e.g., several alcohol moieties) were enriched in compounds only detected using ESI. Examination of physicochemical parameters for ENTACT chemicals suggests that those with higher aqueous solubility preferentially ionized by ESI-. While ESI typically detects a larger number of compounds, APCI offers chromatograms with less background, fewer co-elutions, and additional chemical space coverage, suggesting both should be considered for broader coverage in future NTA research. Graphical abstract.

13.
Environ Sci Technol ; 53(13): 7584-7594, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31244084

RESUMO

The historic emissions of polar micropollutants in a natural drinking water source were investigated by nontarget screening with high-resolution mass spectrometry and open cheminformatics tools. The study area consisted of a riverbank filtration transect fed by the river Lek, a branch of the lower Rhine, and exhibiting up to 60-year travel time. More than 18,000 profiles were detected. Hierarchical clustering revealed that 43% of the 15 most populated clusters were characterized by intensity trends with maxima in the 1990s, reflecting intensified human activities, wastewater treatment plant upgrades and regulation in the Rhine riparian countries. Tentative structure annotation was performed using automated in silico fragmentation. Candidate structures retrieved from ChemSpider were scored based on the fit of the in silico fragments to the experimental tandem mass spectra, similarity to openly accessible accurate mass spectra, associated metadata, and presence in a suspect list. Sixty-seven unique structures (72 over both ionization modes) were tentatively identified, 25 of which were confirmed and included contaminants so far unknown to occur in bank filtrate or in natural waters at all, such as tetramethylsulfamide. This study demonstrates that many classes of hydrophilic organics enter riverbank filtration systems, persisting and migrating for decades if biogeochemical conditions are stable.


Assuntos
Poluentes Químicos da Água , Filtração , Rios , Espectrometria de Massas em Tandem , Águas Residuárias
14.
Anal Bioanal Chem ; 411(19): 4683-4700, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31209548

RESUMO

Liquid chromatography coupled with high-resolution mass spectrometry (LC-HRMS) is increasingly popular for the non-targeted exploration of complex samples, where tandem mass spectrometry (MS/MS) is used to characterize the structure of unknown compounds. However, mass spectra do not always contain sufficient information to unequivocally identify the correct structure. This study investigated how much additional information can be gained using hydrogen deuterium exchange (HDX) experiments. The exchange of "easily exchangeable" hydrogen atoms (connected to heteroatoms), with predominantly [M+D]+ ions in positive mode and [M-D]- in negative mode was observed. To enable high-throughput processing, new scoring terms were incorporated into the in silico fragmenter MetFrag. These were initially developed on small datasets and then tested on 762 compounds of environmental interest. Pairs of spectra (normal and deuterated) were found for 593 of these substances (506 positive mode, 155 negative mode spectra). The new scoring terms resulted in 29 additional correct identifications (78 vs 49) for positive mode and an increase in top 10 rankings from 80 to 106 in negative mode. Compounds with dual functionality (polar head group, long apolar tail) exhibited dramatic retention time (RT) shifts of up to several minutes, compared with an average 0.04 min RT shift. For a smaller dataset of 80 metabolites, top 10 rankings improved from 13 to 24 (positive mode, 57 spectra) and from 14 to 31 (negative mode, 63 spectra) when including HDX information. The results of standard measurements were confirmed using targets and tentatively identified surfactant species in an environmental sample collected from the river Danube near Novi Sad (Serbia). The changes to MetFrag have been integrated into the command line version available at http://c-ruttkies.github.io/MetFrag and all resulting spectra and compounds are available in online resources and in the Electronic Supplementary Material (ESM). Graphical abstract.

15.
J Proteome Res ; 17(12): 4051-4060, 2018 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-30270626

RESUMO

The 2017 Dagstuhl Seminar on Computational Proteomics provided an opportunity for a broad discussion on the current state and future directions of the generation and use of peptide tandem mass spectrometry spectral libraries. Their use in proteomics is growing slowly, but there are multiple challenges in the field that must be addressed to further increase the adoption of spectral libraries and related techniques. The primary bottlenecks are the paucity of high quality and comprehensive libraries and the general difficulty of adopting spectral library searching into existing workflows. There are several existing spectral library formats, but none captures a satisfactory level of metadata; therefore, a logical next improvement is to design a more advanced, Proteomics Standards Initiative-approved spectral library format that can encode all of the desired metadata. The group discussed a series of metadata requirements organized into three designations of completeness or quality, tentatively dubbed bronze, silver, and gold. The metadata can be organized at four different levels of granularity: at the collection (library) level, at the individual entry (peptide ion) level, at the peak (fragment ion) level, and at the peak annotation level. Strategies for encoding mass modifications in a consistent manner and the requirement for encoding high-quality and commonly seen but as-yet-unidentified spectra were discussed. The group also discussed related topics, including strategies for comparing two spectra, techniques for generating representative spectra for a library, approaches for selection of optimal signature ions for targeted workflows, and issues surrounding the merging of two or more libraries into one. We present here a review of this field and the challenges that the community must address in order to accelerate the adoption of spectral libraries in routine analysis of proteomics datasets.


Assuntos
Bases de Dados de Proteínas/normas , Biblioteca de Peptídeos , Proteômica/métodos , Animais , Humanos , Espectrometria de Massas em Tandem/métodos , Fluxo de Trabalho
17.
Environ Sci Technol ; 52(9): 5135-5144, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29651850

RESUMO

A key challenge in the environmental and exposure sciences is to establish experimental evidence of the role of chemical exposure in human and environmental systems. High resolution and accurate tandem mass spectrometry (HRMS) is increasingly being used for the analysis of environmental samples. One lauded benefit of HRMS is the possibility to retrospectively process data for (previously omitted) compounds that has led to the archiving of HRMS data. Archived HRMS data affords the possibility of exploiting historical data to rapidly and effectively establish the temporal and spatial occurrence of newly identified contaminants through retrospective suspect screening. We propose to establish a global emerging contaminant early warning network to rapidly assess the spatial and temporal distribution of contaminants of emerging concern in environmental samples through performing retrospective analysis on HRMS data. The effectiveness of such a network is demonstrated through a pilot study, where eight reference laboratories with available archived HRMS data retrospectively screened data acquired from aqueous environmental samples collected in 14 countries on 3 different continents. The widespread spatial occurrence of several surfactants (e.g., polyethylene glycols ( PEGs ) and C12AEO-PEGs ), transformation products of selected drugs (e.g., gabapentin-lactam, metoprolol-acid, carbamazepine-10-hydroxy, omeprazole-4-hydroxy-sulfide, and 2-benzothiazole-sulfonic-acid), and industrial chemicals (3-nitrobenzenesulfonate and bisphenol-S) was revealed. Obtaining identifications of increased reliability through retrospective suspect screening is challenging, and recommendations for dealing with issues such as broad chromatographic peaks, data acquisition, and sensitivity are provided.


Assuntos
Espectrometria de Massas em Tandem , Humanos , Projetos Piloto , Reprodutibilidade dos Testes , Estudos Retrospectivos
18.
Anal Bioanal Chem ; 410(7): 1931-1941, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29380019

RESUMO

In nontarget screening, structure elucidation of small molecules from high resolution mass spectrometry (HRMS) data is challenging, particularly the selection of the most likely candidate structure among the many retrieved from compound databases. Several fragmentation and retention prediction methods have been developed to improve this candidate selection. In order to evaluate their performance, we compared two in silico fragmenters (MetFrag and CFM-ID) and two retention time prediction models (based on the chromatographic hydrophobicity index (CHI) and on log D). A set of 78 known organic micropollutants was analyzed by liquid chromatography coupled to a LTQ Orbitrap HRMS with electrospray ionization (ESI) in positive and negative mode using two fragmentation techniques with different collision energies. Both fragmenters (MetFrag and CFM-ID) performed well for most compounds, with average ranking the correct candidate structure within the top 25% and 22 to 37% for ESI+ and ESI- mode, respectively. The rank of the correct candidate structure slightly improved when MetFrag and CFM-ID were combined. For unknown compounds detected in both ESI+ and ESI-, generally positive mode mass spectra were better for further structure elucidation. Both retention prediction models performed reasonably well for more hydrophobic compounds but not for early eluting hydrophilic substances. The log D prediction showed a better accuracy than the CHI model. Although the two fragmentation prediction methods are more diagnostic and sensitive for candidate selection, the inclusion of retention prediction by calculating a consensus score with optimized weighting can improve the ranking of correct candidates as compared to the individual methods. Graphical abstract Consensus workflow for combining fragmentation and retention prediction in LC-HRMS-based micropollutant identification.

19.
Environ Sci Technol ; 51(20): 11505-11512, 2017 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-28877430

RESUMO

The vast, diverse universe of organic pollutants is a formidable challenge for environmental sciences, engineering, and regulation. Nontarget screening (NTS) based on high resolution mass spectrometry (HRMS) has enormous potential to help characterize this universe, but is it ready to go for real world applications? In this Feature article we argue that development of mass spectrometers with increasingly high resolution and novel couplings to both liquid and gas chromatography, combined with the integration of high performance computing, have significantly widened our analytical window and have enabled increasingly sophisticated data processing strategies, indicating a bright future for NTS. NTS has great potential for treatment assessment and pollutant prioritization within regulatory applications, as highlighted here by the case of real-time pollutant monitoring on the River Rhine. We discuss challenges for the future, including the transition from research toward solution-centered and robust, harmonized applications.


Assuntos
Monitoramento Ambiental , Poluentes Químicos da Água , Cromatografia Gasosa-Espectrometria de Massas , Espectrometria de Massas , Rios
20.
Environ Sci Technol ; 50(6): 2908-20, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26864277

RESUMO

The main removal process for polar organic micropollutants during activated sludge treatment is biotransformation, which often leads to the formation of stable transformation products (TPs). Because the analysis of TPs is challenging, the use of pathway prediction systems can help by generating a list of suspected TPs. To complete and refine pathway prediction, comprehensive biotransformation studies for compounds exhibiting pertinent functional groups under environmentally relevant conditions are needed. Because many polar organic micropollutants present in wastewater contain one or several amine functional groups, we systematically explored amine biotransformation by conducting experiments with 19 compounds that contained 25 structurally diverse primary, secondary, and tertiary amine moieties. The identification of 144 TP candidates and the structure elucidation of 101 of these resulted in a comprehensive view on initial amine biotransformation reactions. The reactions with the highest relevance were N-oxidation, N-dealkylation, N-acetylation, and N-succinylation. Whereas many of the observed reactions were similar to those known for the mammalian metabolism of amine-containing xenobiotics, some N-acylation reactions were not previously described. In general, different reactions at the amine functional group occurred in parallel. Finally, recommendations on how these findings can be implemented to improve microbial pathway prediction of amine-containing micropollutants are given.


Assuntos
Aminas/química , Biodegradação Ambiental , Esgotos/química , Águas Residuárias/química , Poluentes Químicos da Água/química , Poluentes Químicos da Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA