Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(6)2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36982186

RESUMO

A common theme in glioma disease progression is robust infiltration of immune cells within the tumor microenvironment, resulting in a state of chronic inflammation. This disease state is characterized by an abundance of CD68+ microglia and CD163+ bone marrow-derived macrophages with the greater the percentage of CD163+ cells, the poorer the prognosis. These macrophages are "cold," in that their phenotype is of an alternatively activated state (M0-M2-like) supporting tumor growth rather than being engaged with classically activated, pro-inflammatory, and anti-tumor activities, referred to as "hot", or M1-like. Herein, we have developed an in vitro approach that uses two human glioma cell lines, T98G and LN-18, which exhibit a variety of differing mutations and characteristics, to demonstrate their disparate effects on differentiated THP-1 macrophages. We first developed an approach to differentiating THP-1 monocytes to macrophages with mixed transcriptomic phenotypes we regard as M0-like macrophages. We then found that supernatants from the two different glioma cell lines induced different gene expression profiles in THP-1 macrophages, suggesting that from patient to patient, gliomas may be considered as different diseases. This study suggests that in addition to standard glioma treatment modalities, transcriptome profiling of the effects of cultured glioma cells on a standard THP-1 macrophage in vitro model may lead to future druggable targets that aim to reprogram tumor-associated macrophages towards an anti-tumor phenotype.


Assuntos
Glioblastoma , Glioma , Humanos , Glioblastoma/metabolismo , Transcriptoma , Macrófagos Associados a Tumor/metabolismo , Macrófagos/metabolismo , Glioma/metabolismo , Biologia Computacional , Microambiente Tumoral/genética
2.
JCO Precis Oncol ; 7: e2300176, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38039430

RESUMO

PURPOSE: Immune checkpoint inhibitors (ICIs) are used for an increasing number of indications across various tumor types, as well as several tumor-agnostic indications in patients with advanced cancer. Although many patients benefit from ICI therapy, others do not, highlighting a need for better predictive biomarkers. Tumor mutational burden (TMB) reflects the global number of mutations within a tumor and has been widely explored as a predictive biomarker of ICI response. The current tumor type-agnostic US Food and Drug Administration approval of pembrolizumab for metastatic solid tumors defines high TMB (TMB-H) as ≥10 mut/Mb as measured by FoundationOne CDx. This fixed cutoff may not be the ideal value across all solid tumors. METHODS: We performed a retrospective analysis of the association of survival outcomes with TMB in patients treated with ICI for five major cancer types, using real-world data from the VA. Survival was measured from initiation of ICI, and Kaplan-Meier survival curves were compared by log-rank test. RESULTS: Overall survival (OS) was significantly longer for patients with TMB-H versus TMB low tumors in non-small-cell lung cancer (NSCLC; n = 1,593), head and neck (H&N) cancer (n = 222), and urothelial cancer (n = 332). OS was not significantly different based on TMB status in melanoma (n = 207) or esophageal/gastric cancer (n = 248). CONCLUSION: Consistent with previous studies, a predictive value of TMB ≥10 mut/Mb for ICI response was found in NSCLC and H&N, but not in esophageal/gastric cancer. Although inconclusive in the literature, significant association was found in urothelial cancer. The predictive value of TMB in melanoma was inconclusive. Our analysis does not support the use of a fixed threshold for TMB as a standalone predictive biomarker for ICI across all solid tumors.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias de Cabeça e Pescoço , Neoplasias Pulmonares , Melanoma , Neoplasias Gástricas , Estados Unidos/epidemiologia , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias Pulmonares/genética , Neoplasias Gástricas/tratamento farmacológico , Estudos Retrospectivos , Biomarcadores Tumorais/genética , Melanoma/tratamento farmacológico , Melanoma/genética
3.
Chem Biol Interact ; 312: 108816, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31505164

RESUMO

Indirubins E804 (indirubin-3'-(2,3 dihydroxypropyl)-oximether) and 7BIO (7-Bromoindirubin-3'-oxime) are synthetic derivatives of natural indirubin, the active compound in Danggui Longhui Wan, a traditional Chinese remedy for cancer and inflammation. Herein, we explore E804 and 7BIO for their potential to modulate key pro-inflammatory genes and cytokines in LN-18 and T98G glioblastoma cells. High grade gliomas typically secrete large amounts of inflammatory cytokines and growth factors that promote tumor growth in an autocrine fashion. Inflammation is emerging as a key concern in the success of new treatment modalities for glioblastomas. Studies indicate that select indirubin derivatives bind and activate signaling of the AHR pathway, as well as inhibit cyclin-dependent kinases and STAT3 signaling. AHR signaling is involved in hematopoiesis, immune function, cell cycling, and inflammation, and thus may be a possible target for glioma treatment. To determine the significance of the AHR pathway in LN-18 and T98G glioma inflammatory profiles, and on the effects of E804 and 7BIO on these profiles, we used 6,2',4'-trimethoxyflavone (TMF), a putative selective AHR antagonist. It was confirmed that E804 and 7BIO activates the AHR leading to cyp1b1 expression, and that TMF antagonizes expression. We then employed a commercial cancer inflammation and immunity crosstalk qRT-PCR array to screen for anti-inflammatory related properties. TMF alone inhibited expression of ifng, ptsg2, il12b, tnfa, il10, il13, the balance between pd1 and pdl1, and even expression of mhc1a/b. E804 was very potent in suppressing many pro-inflammatory genes, including il1a, il1b, il12a, ptgs2, tlr4, and others. E804 also affected expression of il6, vegfa, and stat3. Conversely, 7BIO induced cox2, but suppressed a different selection of pro-inflammatory genes including nos2, tnfa, and igf1. Secretion of IL-6 protein, an iconic inflammatory cytokine, was decreased by E804. VEGF (vascular endothelial growth factor) protein secretion was upregulated by 7BIO, yet downregulated by E804 and E804 plus TMF. Thus, E804 is both an AHR ligand and regulator of important pro-inflammatory cytokines such as IL-6 and oncogene STAT3, among others. Our results point to the use of E804 and TMF in combination as a promising new treatment for glioblastoma.


Assuntos
Indóis/farmacologia , Oximas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Linhagem Celular Tumoral , Ciclo-Oxigenase 2/metabolismo , Citocromo P-450 CYP1B1/genética , Citocromo P-450 CYP1B1/metabolismo , Citocinas/metabolismo , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Indóis/química , Oximas/química , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA